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Abstract—Capturing complex and dynamic spatial-temporal dependencies of traffic data is of great importance for accurate and real-time

traffic forecasting in intelligent transportation systems. The spatial-temporal dependency between traffic locations is often dynamic, which

means the correlation between the traffic status of different locations changes jointly over their spatial distance and the time slice they are in.

Most of the existingGraphConvolutional Network-basedmethods usually capture spatial and temporal dependencies separately and then

combine them in a parallel or serial mechanism to capture the spatial-temporal features. They always utilize the predefined static graph

structure to capture both local correlations and global dependencies in the same time slice. Thesemethods are incapable of directly learning

dynamic spatial-temporal dependency across time slices. Meanwhile, it is challenging to learn the spatiotemporal correlation knowledge

among traffic locations only by using neural networks. To address these issues, we propose a novel Dynamic Spatial-Temporal Adjacent

GraphConvolutional Network (DSTAGCN), which connects the latest time slice with each past time slice to construct the spatial-temporal

graph. DSTAGCN can directly learn the global spatial dependency across time and simultaneously capture the spatial-temporal

dependencies through graph convolution. Since fuzzy theorymake it possible to represent uncertain relationships, a simplified fuzzy neural

network that integrates fuzzy systems and neural networks is designed to help generating the graph adjacencymatrix representing the

dynamic adjacency correlations. Experiments on public datasets show that our method outperforms baselineswith fast convergence.

Ç

1 INTRODUCTION

TRAFFIC forecasting plays a crucial role in the Intelligent
Transportation System (ITS). Accurate real-time predic-

tion of massive traffic data is conducive to alleviating traffic
congestion, optimizing traffic configuration, and improving
the effectiveness of traffic control. With the significance,
traffic forecasting has attracted more and more attention in
academia and industry. Traffic forecasting is challenging
due to the interaction of spatial-temporal dependencies and
the dynamic properties of the adjacency relationship:

(1) Strong interactive spatial and temporal dependencies.
Here interactivemeans that the spatial correlation and the tem-
poral correlation between traffic status in different locations
will influence each other. As traffic information is spread
around the road network over time dynamically, the mutual
influence between traffic locations is simultaneously related
to their spatial distance and the time slice they were in. The
traffic state of one location in the upcoming moment depends
not only on the recent states of itself and its local neighbors
but also on the past states of locations far away from it. From a
local space-time point of view, as shown in Fig. 1, the present

traffic state (e.g. congestion) of one location in the road net-
work will affect the adjacent locations’ near future through
spatial propagation. Based on this propagationmode, the traf-
fic state of the target location (blue rectangle) at time tþ 3 can
be potentially attributed to the traffic state of the distant loca-
tions at time t (red circles). Therefore, when it comes to a
larger time scale and space scale, the past states of distant loca-
tions also have global impacts on the future states of the target
location. Specifically, for a target location in the predicted
time slice, spatially nearby neighbours and distant locations
will have different impacts in the prediction. Its adjacent loca-
tions will have a greater short-term impact, while its distant
locations might have a greater long-term impact [1], [2], as
illustrated in Fig. 2. This demonstrates the interaction of spa-
tial-temporal dependency, which inspires us that considering
the relationship between the two dependencies simulta-
neously may help to understand the process of traffic state
evolution.

(2) Dynamic and uncertain mutual influence of traffic loca-
tions. The spatial correlations between different traffic locations
are time-varying. For example, the same area shows different
traffic patterns during peak hours and off-peak hours; Secondly,
due to the traffic propagation, the spatial influence on different
time spans is different. For example, in Fig. 2, local spatial depen-
dencies tend to occur in themost recent periods, and global spa-
tial dependencies tend to be across time rather than at the same
time slice.Moreover, due to the existence of various internal and
external factors (such as weather, events, emergencies, and road
constructions, etc), the degree of interaction among traffic loca-
tions becomes complex and thus hard to be clearly identified.
Modeling of this uncertain correlation in different time slices
could contribute to the efficient traffic prediction.
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To capture these complex spatial-temporal correlations of
traffic data, more andmore deep learning methods have been
proposed. Most of these methods focus on the modeling of
spatial and temporal characteristics respectively. Many stud-
ies use the Graph Convolutional Network (GCN) to learn the
spatial relationship between traffic graph nodes in each time
slice, and also use the Recurrent Neural Network (RNN) or
the Convolutional Neural Network (CNN) to learn the time-
varying dependency of each node in the past time slices. Then
these two features were combined either in parallel or serial
mechanisms to capture the spatial-temporal dependency.
Despite remarkable results achieved by these methods, cap-
turing the interactivity of spatial and temporal dependencies
well is still challenging. Besides, inmany existing GCN-based
methods, the adjacency matrix representing the correlation
among traffic locations is generally predefined in terms of the
original topological structure of the road network which is
static over time. The unprocessed raw adjacencymatrixmani-
fests only the local relationship but neglects the global depen-
dency. And the static adjacency matrix fails to reflect the
dynamic spatial dependencies. Therefore, these methods
need to stack many convolution layers or increase the length
of the input sequence when capturing the above-mentioned
global spatial dependencies across distant time, which leads
to an increasing cost in model training and the possibility of
error accumulation, especially in RNNs.

To address these issues, we propose a Dynamic Spa-
tial-Temporal Adjacent Graph Convolutional Network
(DSTAGCN) for traffic forecasting. Inspired by STSGCN [4],
which utilizes a localized spatial-temporal subgraphmodule
to model localized correlations synchronously, we construct
spatial-temporal graphs to simultaneously capture the spa-
tial-temporal dependencies. Different from STSGCN, we
connect the latest time slice with each time slice in the input
sequence to explore the potential impact of different loca-
tions at each time slice on the upcoming time slice. Thus, the
adjacency matrix of each spatial-temporal graph reflects the
direct spatial-temporal correlation of two different time sli-
ces. Moreover, since fuzzy theory make it possible to repre-
sent uncertain relationships, it will be beneficial to combine
fuzzy reasoning with neural networks to express uncertain
spatial-temporal relations. So, to effectively capture the adja-
cency correlation between traffic locations, a data-driven
method that combines fuzzy systems and neural networks is
designed to generate the dynamic adjacency matrices. Fur-
thermore, a new graph convolution module is proposed to
extract the hidden features. With this framework, the pro-
posed model can dynamically mine the interactive spatial-
temporal dependencies through the reconstructed graph
structure, and improve the prediction effectiveness through
a simplified fuzzy neural network.

The main contributions of this work are as follows:

1) The two graphs from the latest time slice and each
past time slice are connected to construct the spatial-
temporal graph. The Spatial-Temporal Adjacency
Matrix (STAM) of the reconstructed graph reflects
direct global spatial correlation across time slices. In
this way, the proposed model can capture the spatial
and temporal dependency simultaneously, especially
the long-term global spatial dependency, by only one
layer of graph convolution, which would avoid the
excessive error accumulation and consumption in
RNNmethods in sequence learning.

2) A novel data-driven module based on the fuzzy neu-
ral network is proposed to learn the adjacency matri-
ces of traffic graphs. This work is conducive to mine
the potential and uncertain interconnections between
traffic data. To the best of our knowledge, our pro-
posed model is the first to leverage the fuzzy neural
network to learn the adjacency matrix in graph con-
volutionmethods.

3) The proposed model is evaluated on six public real-
world traffic datasets. The experiments show that
our approach outperforms baseline methods.

The rest of the paper is organized as follows. Section 2
introduces problem definition and reviews the spatial-tem-
poral modeling methods for traffic forecasting, especially
the GCN-based methods, and the related theory of the fuzzy
neural network. The general framework and details of the
proposed method DSTAGCN are introduced in Section 3.
We conduct the experiments and analyze the result in Sec-
tion 4 and the conclusion is made in Section 5.

2 PROBLEM DEFINITION AND RELATED WORK

2.1 Problem Definition

The traffic forecasting of the road network aims to predict
the future traffic states (e.g. flow, speed, etc.). Given a road
network, we can represent it as a graph G ¼ ðV; E;AÞ, where
V is a set of nodes, jVj ¼ N , E is a set of edges and
A 2 RN�N is the original adjacency matrix. Each entry Aij

denotes the influence degree of two nodes with an edge e 2
E from vi to vj. Here, the nodes in the graph represent the
observation point on the road section, and the edges in the
graph represent the connection relationship between each
node. Denote the traffic data observed on G at time slice t as

Fig. 1. An example of local traffic state propagation demonstrating the
local spatial dependency in recent periods on Beijing [3]. The red circles
indicate the traffic congestion on road locations and their moving direc-
tion, while the area inside the blue rectangle indicates the target location
to be investigated.

Fig. 2. An example of global spatial dependencies across distant time sli-
ces on Xi’an [2]. Traffic conditions on the road network can be aggre-
gated at regular time slices and displayed as snapshots on the timeline.
This figure illustrates road networks in different time slices, the blue one
is in the predicted time slice t, and the blue star node is the predicted tar-
get. The dark green lines on the road network represent the sections
with the greatest influence on the predicted target node in the past time
slices.
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a feature matrix Xt 2 RN�C , where C is the number of fea-
tures of each node. The problem of spatial-temporal traffic
forecasting on road network can be formulated as learning
a mapping function f on the road network G and corre-
sponding historical observation X in the past P time slices
and then predict the traffic data in the next Q time slices,
which is shown as follows:

fðXt�p; . . .; Xt�1; Xt;GÞ ! ðX̂tþ1; X̂tþ2; . . .; X̂tþQÞ (1)

where p ¼ P � 1 for briefness, P is the length of historical
time slices and Q is the length of the time series that need to
be predicted.

From the perspective of time, the data of each node itself
is a time-varying traffic sequence. From the perspective of
space, within a time slice, the traffic state of each node spa-
tially affects others. From the perspective of traffic propaga-
tion, the traffic state is simultaneously affected by time and
space factors, presenting interactive temporal and spatial
characteristics. Hence, capturing these complex dynamic
spatial-temporal dependencies is crucial and has drawn a
lot of attention in the literature. Besides, the fuzzy neural
network helps to mine uncertain adjacency correlations
with the integration of the good knowledge representation
ability of the fuzzy system and the self-supervised learning
ability of the neural network.

2.2 Spatial-Temporal Modeling in Traffic Forecasting

The flourishing research work on spatial-temporal modeling
in traffic forecasting work can be generally grouped into three
categories: classical statistical methods, machine learning
methods, and deep learning methods. Many classical statisti-
calmethods are devoted to summarizing the temporal charac-
teristics of traffic flow changes through a statistical model
based on data, such asHistorical Average (HA), Auto-Regres-
sive Integrated Moving Average (ARIMA) [5], and Vector
Auto-Regressive (VAR) [6]. Later, many machine learning
methods, such as Support Vector Regression (SVR) [7] were
proposed for traffic forecasting. Although such methods can
process high-dimensional data and capture nonlinear rela-
tionships, they are still labored to capture the complex and
dynamic spatial-temporal dependencies. With the improve-
ment of data acquisition capability and hardware computing
power, the deep-learning method develops rapidly. Gener-
ally, for gird-like data, the spatial correlation can be modeled
by Convolutional Neural Network (CNN) and the temporal
correlation can be extracted by Recurrent Neural Networks
(RNN) (e.g. GRU [8] and LSTM [9]).

In recent years, Graph Convolutional Network (GCN)
extends the convolution methods to non-Euclidean data,
which can incorporate the topology of a transportation net-
work into a deep neural network. Hence, many GCN-based
traffic forecasting methods have been proposed to capture
the spatial-temporal dependency.

(1) Most GCN-based methods focus on modeling spatial
and temporal characteristics separately. In general, many
studies use the GCN to learn the spatial relationship between
traffic graph nodes in each time slice, and also use the Recur-
rent Neural Network (RNN) or the Convolutional Neural
Network (CNN) to learn the time-varying dependency of
each node in the past several time slices. They then combine

these two features either in parallel or serial mechanisms to
capture the spatial-temporal dependency. STGCN [10] used
Gated CNN and spectral-domain GCN respectively to
extract time and space features and then combined them into
a spatial-temporal convolutional block. DCRNN [11] intro-
duced the diffusion graph convolution (spatial domain)
replacing the matrix multiplications in GRU to model spa-
tial-temporal dependency. T-GCN [12] utilized spectral-
domain GCN to capture spatial dependency and then fed
these hidden features into a GRU layer. Some other meth-
ods [13], [14], [15], with the encoder-decoder structure, used
the attention mechanism to capture dynamic changes in
space or time dimension and get improvements. STSGCN [4]
connected graphs from different time slices to capture spa-
tial-temporal features simultaneously. It has a better perfor-
mance in capturing short-time dependency with the
localized spatial-temporal graph, but it does not consider the
long-term global spatial dependency.

(2) The adjacency matrix of a GCN is usually used to rec-
ognize the connectivity of a road network. It can also indicate
the degree of correlation between traffic locations. Adjacency
matrix plays a vital role in both spectral-domain and spatial-
domain methods of graph convolution. In a general spectral-
domain method [16], the Laplacian matrix is computed from
the adjacency matrix. In spatial-domain methods [11], [17],
[18], the aggregation of neighbor characteristics is crucial,
and such neighbor relationships are usually defined or pre-
computed by the adjacency matrix. Many GCN-based meth-
ods use a predefined adjacency matrix based on the original
road network topology. This predefined graph structure
tends to be static in the network and always manifests a local
spatial correlation, which means a location is always most
strongly associated with its immediate neighbors. However,
the adjacency relationship of each location is prone to be
dynamically changeable and exists in the global graph struc-
ture. Based on this,many researchers try to dynamically learn
the graph structure. STGNN [19] and GAT [20] utilized the
attention mechanism to adaptively adjust the degree of con-
nection between traffic locations but they were still based on
the predefined local adjacency relation. GLA [21] used GCN
to extract spatial relationships of traffic flow, in which the
adjacency matrix is composed of trainable parameters and is
obtained through the learning over datasets. Graph Wave-
net [22] proposed a self-adaptive adjacency matrix to dis-
cover hidden spatial dependencies. SLCNN [23] proposed
two data-driven and time-varying graph structure learning
modules to capture the global and local structure, respec-
tively. Each module in SLCNN learns a static graph adja-
cency matrix and a dynamic one from data. These methods
havemade considerable progress. They all aim to the variable
adjacency relationship in each time slice but neglect the spa-
tial relation across time. In a recent study, STFGNN [24] also
plays attention to exploiting the spatial and temporal proper-
ties of the traffic data in the graph construction. It propose a
novel spatial-temporal fusion graph module inspired by
Dynamic TimeWrapping algorithm to construct spatial-tem-
poral graph adjacencymatrix.

2.3 Fuzzy Neural Network

The fuzzy system is closer to human-like thinking, which
uses fuzzy rules to represent inexact data and knowledge

ZHENG AND ZHANG: DSTAGCN: DYNAMIC SPATIAL-TEMPORAL ADJACENTGRAPH CONVOLUTIONAL NETWORK FOR TRAFFIC FORECASTING 243

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 12,2025 at 06:01:29 UTC from IEEE Xplore.  Restrictions apply. 



and applies fuzzy inference to data. Fuzzy systems provide
convenient and flexible reasoning methods to realize fuzzy
but robust and efficient reasoning [25]. Different from tradi-
tional fuzzy reasoning systems that require manual rule-set-
tingwhich takesmuch time, fuzzy neural networks can learn
fuzzy rules and tune membership functions. Since fuzzy
relations make it possible to represent uncertain relation-
ships, it might be helpful to integrate fuzzy reasoning into
themodel to express uncertain spatial-temporal relations.

The fuzzy neural network [26], [27], [28], [29] combines
the fuzzy system with the neural network, which has both
the reasoning ability of the fuzzy inference system in an
environment of uncertainty and imprecision, and the self-
learning ability of the neural network. The fuzzy neural net-
work is based on the simple ”IF-THEN” rules, like ”IF x1
AND x2 AND..., THEN y”. A typical fuzzy neural network
has three main parts: a fuzzification layer, a rules layer, and
a defuzzification layer. In the fuzzification layer, the input
variables are fuzzified by appropriate membership func-
tions to obtain the membership values which are the reason-
ing antecedents for the ”IF” part. These values are combined
in the rules layer through a specific T-norm operator (usu-
ally multiplication or minimalization) to act the ”AND”
operation of each fuzzy rule. In the defuzzification layer,
the qualified consequents of each rule are aggregated to pro-
duce an output for the ”THEN” part.

Fuzzy neural networks have been utilized in traffic fore-
casting. Quek et al. [30] described the application of the
pseudo-outer-product fuzzy neural network using the
truth-value-restriction method for short-term traffic flow
prediction. Zhang et al. [31] proposed a hierarchical fuzzy
system that combined the genetic algorithm (GA) to opti-
mize the rule base for traffic congestion prediction. Tang
et al. [32] proposed a new method in the construction of a
fuzzy neural network to forecast the travel speed. Chen
et al. [33] presented a fuzzy deep-learning approach to deal
with the challenge of uncertainty in large-scale traffic flow

prediction. In general, the experimental results showed that
the fuzzy neural network was an effective method in traffic
state estimation and prediction.

In a nutshell, we aim to capture the spatial-temporal
dependency of traffic locations simultaneously from the per-
spective of traffic state propagation. Different from most
existing methods, our model can capture the global spatial
correlations between the past time slice and the latest time
slice through the spatial-temporal adjacency matrix. And we
learn the inexact adjacency matrices dynamically in a data-
drivenway through a re-designed fuzzy neural network.

3 METHODOLOGY

Considering the unique spatial-temporal dependencies of
traffic data during the dynamical traffic propagation, we
propose the Dynamic Spatial-Temporal Adjacent Graph
Convolutional Network (DSTAGCN) model to address the
traffic forecasting issue on the traffic network. Fig. 3 illus-
trates the overall framework of the proposed DSTAGCN
model. Specifically, the model consists of four main parts: 1)
Spatial-Temporal Graph Construction Module for constructing
the spatial-temporal graphs which connected each past time
slice and the latest time slice. 2) Adjacency Matrix Generation
Module for learning and constructing the adjacency matrix
of the spatial-temporal graph. In our work, the fuzzy neural
network is employed in generating the adjacency matrix. 3)
Graph Convolution Module for extracting the spatial-temporal
features from the spatial-temporal graph with dynamic
learnable adjacency matrices. 4) Output Module for predict-
ing the expected future traffic sequence.

The traffic graph in each time slice t� i ði ¼ f0; . . .; P �
1gÞ in the input sequence is connected with that of the latest
time slice t to construct a spatial-temporal graph. The fea-
ture matrix Zt�i of the spatial-temporal graph is connected
by Xt�i and Xt correspondingly in the Spatial-Temporal
Graph Construction Module. The adjacency matrix AZ

t�i of the

Fig. 3. The overall framework of the proposed DSTAGCN model.
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spatial-temporal graph is learned from the input feature
matrix Xt�i and the constructed feature matrix Zt�i in the
Adjacency Matrix Generation Module. Then these P trans-
formed spatial-temporal feature matrices and P adjacency
matrices are sent into P Graph Convolution Modules respec-
tively to capture the hidden features. All hidden features
are then concatenated and used to generate the predicted
sequence in the Output Module.

3.1 Spatial-Temporal Graph Construction Module

To capture the global spatial influence across time between
locations, we reconstruct the input sequence.We connect two
time slices to construct a spatial-temporal graph. Instead of
connecting all nodes with themselves at adjacent time slices,
we connect the past time slices and the latest time slice, to
directly capture the spatial-temporal dependencies on differ-
ent time spans. The spatial-temporal graph can be regarded
as having a node-set twice the size. The feature matrix on the
spatial-temporal graph is constructed by the feature matrices
in respective time slice as in Fig. 4a.

Zt�i ¼ ½Xt�i;Xt� 2 R2N�C (2)

Where ½� denotes concatenation,Xt�i; Xt 2 RN�C , and Zt�i 2
R2N�C is the spatial-temporal feature matrix.

Fig. 4b illustrates an example of the spatial-temporal
graph structure, the orange and blue slices represent the lat-
est time slice t and one of the past time slices t� i, respec-
tively, and the dotted red arrows represent spatial correlation
across time between different nodes. It is noteworthy that
this spatial connection across time is unidirectional and is not
limited to the same nodes. We use AZ

t�i 2 R2N�2N to denote
the adjacency matrix of the spatial-temporal graph which
connects the time slice t� i and time slice t. It is defined as:

AZ
t�i ¼ At�i AST

t�i

0 At

� �
2 R2N�2N (3)

where At�i; At are the spatial adjacency matrices of the net-
works of the past time slice t� i and the latest time slice t.
The Spatial-Temporal Adjacency Matrix (STAM) AST

t�i

reflects the across-time spatial influence from nodes in past
time slice t� i to the nodes in latest time slice t, which rec-
ognizes the spatial-temporal correlation. With this structure,
AZ

t�i can recognize not only the spatial correlation in time
slice t and t� i but also the spatial-temporal correlation
between the two time slices.

3.2 Adjacency Matrix Generation Module

The original adjacency matrix of the road network traffic
graph represents the spatial association between nodes,
which is static. The adjacency matrix of the spatial-temporal
graph represents the spatial relations across time.

Instead of using predefined or fixed adjacency matrices,
we adopt a data-driven approach to dynamically generate
the adjacency matrices. As shown in Fig. 5, we feed the fea-
ture matrix Xt�i into the S-AML (Spatial Adjacency Matrix
Learning) module to generate the spatial adjacency matrix
At�i at each time slice t� i, and feed the reconstructed fea-
ture matrix Zt�i on the spatial-temporal graph into the ST-
AML (Spatial-Temporal Adjacency Matrix Learning) module to
generate the spatial-temporal adjacency matrix AST

t�i, and
then combine these two types of adjacency matrices accord-
ing to Eq. (3) to get AZ

t�i.
In this work, we propose a data-driven method based on

the fuzzy neural network to learn the adjacency matrix in
both S-AML and ST-AML modules. The core idea of two
AMLmodules is to extract the global interactive correlations

Fig. 4. The Spatial-Temporal Graph Construction Module.

Fig. 5. Left: The AML (Adjacency Matrix Learning) modules based on the fuzzy neural network. Right: An example of the fuzzification and the rules
layer with 3 input nodes and 2 membership functions for each input node.
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by examining the data of all traffic locations, and map them
to the adjacency matrix. Therefore, the inputs of this fuzzy
network are flattened, which investigates all traffic nodes in
an individual way. Specifically, for an input feature matrix
Xin, it can be reshaped into a vector xin 2 Rnin�C , here nin is
the number of input nodes (nin equals N for Xt�i and 2 N
for Zt�i), C is the number of input feature channels (Here in
this paper, the input feature is either traffic flow or traffic
speed, i.e. C ¼ 1). The nin input nodes are fuzzified in the
fuzzification layer. Gaussian function is employed as the
membership function in the fuzzification layer. The fuzzifi-
cation can be formulated as:

uki ¼ MFkiðxkÞ ¼ e�ðxk�mkiÞ2=s2ki ; i 2 f1; . . .;mg (4)

where MF denotes the membership function, m is the num-
ber of membership functions for each input, xk indicates the
kth input node, k 2 f1; . . .; ning. mki, ski are learnable param-
eters in the Gaussian function, and u are outputs of the fuz-
zification. Different from the learnable parameters which
directly weight the input in the hidden layer of a general
neural network, the parameters in the fuzzification layer
here are only used to define the membership function. The
output value of the membership function shows the extent
to which a value of input variable is included in a fuzzy set.
These values are the reasoning antecedents for the ”IF” part
in fuzzy rules, they all contribute to the fuzzy reference pro-
cess in the following layer.

In the rules layer of a conventional fuzzy neural network,
the number of fuzzy rules nF is determined by the combina-
tion of the membership functions for input variables [26],
which is nF ¼ mnin . In our work, all input nodes are investi-
gated. As nin is relatively high in a citywide traffic network,
nF ¼ mnin will be extremely large which is unacceptable in
this model. So, considering the feature homogeneity of the
input (C ¼ 1), instead of covering each combination of
membership functions, we select just one combination for
membership functions, which can be formulated as:

di ¼ minfu1i; u2i; . . .; ukig; i 2 f1; . . .;mg (5)

Here, themin function is selected to combine themembership
values as a usual T-norm operator and acts the ”AND” opera-
tion in fuzzy rules. In this way, the number of rules nF is
significantly reduced to m. The output D ¼ ½d1; . . .; di; . . .;
dm� 2 Rm of the rules layer can be treated as hidden fuzzy fea-
tures. The right part of Fig. 5 illustrates the detail of an exam-
ple of these two layers with 3 input nodes (n ¼ 3) and 2
membership functions for each input node (m ¼ 2).

The defuzzification layer in a general fuzzy neural net-
work consists of normalization and aggregation. Different
from the general fuzzy neural network which outputs only
one numerical value, we expect to obtain the influence rela-
tionship among multiple nodes. Therefore, in our work, a
fully connected layer is employed to make defuzzification
with a linear projection:

Ad ¼ DenseðDÞ 2 RN2
(6)

whereDensemeans the fully connected layer,D is the fuzzy
features. This layer generates the deduction for the ”THEN”
part in fuzzy rules. Besides, a dropout layer is stacked behind

to reduce overfitting. Note that this data-drivenmodule does
not directly calculate the adjacency matrix from the input
data through certain connection weights, but first uses the
fuzzy layers to extract the fuzzy features of the input data
and then maps them to the target matrix through a fully con-
nected layer. The output feature Ad are then reshaped into
Â 2 RN�N .

In the S-AMLmodule, since the original adjacency matrix
represents a good prior and will have impacts in a single
time slice, the original adjacency matrix A is weighted and
then added to the learned one. So the spatial adjacency
matrix is calculated as follows:

At�i ¼ ÂþWmask �A (7)

where Wmask is the weight of the original adjacency matrix
and � denotes element-wise product. This transforms the
learned adjacency matrix Â in each time slice into a residual
part of the original one, which is the dynamic correction of
the correlation while maintaining a good prior for the short-
term spatial dependency. Differently, in the ST-AML mod-
ule, AST

t�i ¼ Â since the correlation across time is hard to
define in advance.

3.3 Graph Convolution Module

After the construction of the spatial-temporal graph, we
use a fully connected layer to transform the reconstructed
feature sequence Z ¼ ½Zt�Pþ1; ...; Zt�1; Zt� 2 RP�2N�C into a
high-dimension space:

Z0 ¼ DenseðZÞ 2 RP�2N�C0
(8)

where Z0 is the processed feature matrix sequence. As
shown in Fig. 6, the graph convolution module is employed
to capture the spatial-temporal dependency between nodes
in the constructed graph. According to the established spa-
tial-temporal adjacency matrix, we define a convolution
method in the spatial domain to aggregate the information
of the adjacency nodes of each node on the spatial-temporal
graph. Meanwhile, GLU [34] is selected as the activation
function. This graph convolution can be formulated as:

HG
t�i ¼ ðAZ

t�iZ
0
t�iW1 þ b1Þ � sðAZ

t�iZ
0
t�iW2 þ b2Þ (9)

where W1;W2 2 RC0�Cout , b1; b2 2 RCoutare learnable parame-
ters, s denotes the sigmoid activation function, and HG

t�i is
the output of the convolution layer. It is worth noting that
only one such convolutional layer is adopted here. Due to
the construction form of the spatial-temporal graph, the
connection of the distant location in the earlier time can be
directly reflected by the spatial-temporal adjacency matrix.

Fig. 6. The Graph Convolution Module.
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Therefore, one layer of convolution is sufficient for aggre-
gating the adjacent features of each node. Besides, we add a
skip connection before and after the convolution layer, tak-
ing the result of the convolution as the residual part, to facil-
itate network training:

HZ
t�i ¼ HG

t�i þ Z0
t�i 2 R2N�Cout (10)

here C0 ¼ Cout in practice. Theoretically, these two hyper-
parameters can be different. In this case, the operation of
dimension change needs to be carried out which has been
omitted here for brevity. As for the result of the convolution
HZ

t�i 2 R2N�Cout , we use the max-pooling to compress it into
the node feature:

ðHt�iÞm;: ¼ maxððHZ
t�iÞm;:; ðHZ

t�iÞmþN;:Þ (11)

whereHt�i 2 RN�Cout is the output node feature.
Collectively, here we use one graph convolution layer

(based on the spatial domain) and combine the residual con-
nection to aggregate the features of the spatial-temporal
adjacent features of each node, and finally use the max-
pooling to transform it into the hidden node feature.

3.4 Output Module

The output layer converts the feature matrices output by the
graph convolution module into the final expected targets.
The output of the graph convolution module on each time
slice is Ht�i 2 RN�Cout . We merge the past P time slice out-
put into Ho 2 RN�PCout . Two fully connected layers are used
to generate the predicted output for each predicted time
slice, then the final prediction matrix can be concatenated
by the output of each time slice:

Ŷtþj ¼ ReLUðDenseðReLUðDenseðHoÞÞÞÞ 2 RN�C (12Þ

Ŷ ¼ ½Ŷtþ1; Ŷtþ2; . . .; ŶtþQ� 2 RQ�N�C (13)

where ReLU is the activation function, and Ŷ is the output
of the proposed model.

In this work, Huber loss [35] is selected as the loss func-
tion due to its robustness to outliers:

Lðy; ŷÞ ¼
1
2 ðy� ŷÞ2; jy� ŷj � d

djy� ŷj � 1
2 d

2; otherwise

�
(14)

where y and ŷ represent the ground truth and predictions
respectively, and d is a threshold parameter (1 by default).

In summary, the Spatial-Temporal Graph Construction
Module provides a novel approach to directly capture spatial
associations across distant time by linking the past and the
latest time slices. In the Adjacency Matrix Generation Module,
the adjacency matrices learned on each time slice can reflect
the dynamic and heterogeneous spatiotemporal correlation,
and the fuzzy network can extract the uncertain adjacency
correlations flexibly. Based on the above framework, the
Graph Convolution Module can extract long-term spatial-tem-
poral features with only one layer of convolution.

4 EXPERIMENTS

4.1 Datasets and Preprocessing

We evaluate ourmodel on six public traffic network datasets.

� PEMS03, PEMS04, PEMS07, and PEMS08 published
by [4]. These four datasets record traffic flow in four
districts in California respectively.

� METR-LA and PEMS-BAY released by [11]. METR-
LA contains 4 months of traffic speed from 207 sen-
sors in the highway of Los Angeles County. PEMS-
BAY records 6 months of traffic speed from 325 sen-
sors in the Bay Area.

The detailed statistics are shown in Table 1. All data are
collected every 5 minutes, which means there are 12 time
slices for each hour. Following [4] and [11], we split the first
four datasets with a ratio of 6:2:2 into training sets, valida-
tion sets, and test sets, and 7:1:2 for the other two datasets.
For METR-LA and PEMS-BAY datasets, the missing values
are filled with the mean value of each location in the train-
ing process. For all datasets, we employ the Z-score normal-
ization to standardize the features:

Xnorm ¼ X �meanðXÞ
stdðXÞ (15)

4.2 Baselines

� VAR [6]: Vector Auto Regression, a time series
model, can capture the pairwise relationships among
traffics.

� SVR [7]: Support Vector Regression uses the linear
support vector machine for a regression problem.

� LSTM [9] and FC-LSTM [36]: Long Short-Term
Memory network and Fully Connected Long Short
TermMemory network for time series prediction.

� STGCN [10]: Spatial-Temporal Graph Convolution
Network. STGCN uses the graph convolution method
based on spectral domain, integrated with 1D CNN to
capture the spatial-temporal correlation of traffic data.

� DCRNN [11]: Diffusion Convolutional Recurrent
NeuralNetwork. DCRNN introduces diffusion graph
convolution to capture the spatial features and uses a
variant of RNN to predict the future sequence.

� T-GCN [12]: Temporal Graph Convolutional Net-
work. T-GCN uses spectral-domain GCN to capture
spatial dependency and then feed these hidden fea-
tures into GRU to make the prediction.

� STSGCN [4]: Spatial-Temporal Synchronous Graph
Convolutional Networks, which connect different
time slices to form a localized spatial-temporal graph
and capture the local spatial-temporal relationship
synchronously.

TABLE 1
The Detail Statistics of Datasets

Dataset #Nodes #Time slices Data Type

PEMS03 358 26208 flow
PEMS04 307 16992 flow
PEMS07 883 28224 flow
PEMS08 170 17856 flow
METR-LA 207 34272 speed
PEMS-BAY 325 52116 speed
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� STFGNN [24]: Spatial-Temporal Fusion Graph Neu-
ral Networks, which propose a novel spatial-tempo-
ral fusion graph module to capture spatial-temporal
dependencies synchronously.

4.3 Experiment Settings

Our experiments are conducted on a Linux server with one
Intel(R) Xeon(R) Gold 6230 CPU @ 2.10 GHz and one NVI-
DIA Tesla V100-SXM2 GPU card. We implement the pro-
posed model with Keras based on TensorFlow. For all
datasets, the input sequence length P and the output
sequence lengthQ are both 12, which means to use one-hour
historical data to predict the next hour data. The number of
membership functionsm for each input node in the fuzzifica-
tion layer is 10 and the dropout rate in theAMLmodule is set
as 0.8. And just 1 graph convolution layer that has 64 filters is
employed. In our experiments, we use Adam optimizer to
train the model with a learning rate of 0.001 for 200 epochs.
The batch size is 32.

We use three metrics to evaluate the prediction perfor-
mance of the proposed model: Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Root Mean

Squared Error (RMSE). All missing values are excluded
from testing. For the METR-LA and PEMS-BAY datasets,
following the implementation of [11] and [22], the metrics
are calculated from one single predicted time slice and the
truth value, that is, the 15, 30, 60 min in table 3 means the
3 rd, 6th, 12th time slice respectively. For the other four
PEMS datasets, following the implementation of [4], the
metrics are calculated from the whole 12 time slices.

4.4 Experiment Results

The performance comparison of various methods is shown
in Table 2 and Table 3. The proposed DSTAGCN achieves
better performance than baseline methods consistently on
these six datasets.

DSTAGCN outperforms the traditional time-series mod-
els and classic GCN-based models on every dataset. VAR
and SVR perform quite poorly because they only take time
dependency into account and simply make predictions sta-
tistically or analytically from historical sequences. LSTM
and FC-LSTM also only consider the time factor and do not
achieve comparable performance. Both DCRNN and T-
GCN use GCN and GRU to capture spatial and temporal

TABLE 2
Performance Comparison of the DSTAGCN and Baselines on 1-Hour Prediction on PEMS03, PEMS04, PEMS07 and PEMS08
Datasets. the Best Results are Shown in Bold, the Results in Italics Come From a Re-Implementation in Our Environment, and

Other Baseline Results are Cited from [4] and [24]

Models PEMS03 PEMS04 PEMS07 PEMS08

MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE MAE MAPE(%) RMSE

VAR 23.65 24.51 38.26 23.75 18.09 36.66 75.63 32.22 115.24 23.46 15.42 36.33
SVR 21.97 21.51 35.29 28.70 19.20 44.56 32.49 14.26 50.22 23.25 14.64 36.16
LSTM 21.33 23.33 35.11 27.14 18.20 41.59 29.98 13.20 45.84 22.20 14.20 34.06
T-GCN 20.62 20.20 35.30 24.02 15.54 39.68 31.83 13.76 58.19 22.83 13.45 38.03
DCRNN 18.18 18.91 30.31 24.70 17.12 38.12 25.30 11.66 38.58 17.86 11.45 27.83
STGCN 17.49 17.15 30.12 22.70 14.59 35.55 25.38 11.08 38.78 18.02 11.40 27.83
STSGCN 17.48 16.78 29.21 21.19 13.90 33.65 24.26 10.21 39.03 17.13 10.96 26.80
STFGNN 16.77 16.30 28.34 19.83 13.02 31.88 22.07 9.21 35.80 16.64 10.60 26.22
DSTAGCN 15.31 14.91 25.30 19.48 12.93 30.98 21.62 9.10 34.87 15.83 10.03 24.70

TABLE 3
Performance Comparison of the DSTAGCN and Baselines on METR-LA and PEMS-BAY Datasets.

The Best Results are Shown in Bold, the Results in Italics Come From a Re-Implementation in Our Environment,
and Other Baseline Results are Cited from [11] and [22]
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features respectively. STGCN uses spectral domain graph
convolution to capture spatial correlation and 1D CNN to
process time series. And the adjacency matrices used by
these methods are all predefined and fixed in each time
slice, which means they do not consider the dynamic char-
acteristics of traffic data and could not obtain good predic-
tion performance.

Compared with STSGCN, the MAE and RMSE of
DSTAGCN are approximately 12.41% and 13.38% lower on
the PEMS03 dataset, respectively, and we connect fewer
time slices (2 time slices) and fewer convolutional layers (1
layer). STSGCN similarly connects different time slices to
form a spatial-temporal graph, but it only captures local
spatial-temporal relationships, and the impact on long-term
global neighbors needs to be extracted by stacking many
convolutional layers. Although weighted by the Mask
matrix, the adjacency matrix adopted by STSGCN is still
limited to the predefined adjacency relation and does not
extend to the global neighbor relation.

Compared with STFGNN, which similarly pay attention
to the generation of the spatial-temporal adjacency matrices,
the MAE and RMSE of DSTAGCN are approximately 8.70%
and 12.01% lower on the PEMS03 dataset, respectively.
Despite that the data-driven adjacency matrices of the
reconstructed graph in STFGNN contribute to the better
performance than STSGCN, the connection of continuous
adjacent time slices (4 in practice) and multi-layers frame-
work in STFGNN brings higher model complexity and
makes it labored to capture the spatial correlation across
time (it requires stacking multiple complicated layers).

The consistently better results on these datasets show
that this organization of the spatial-temporal graph in our
DSTAGCN is more effective due to the more direct way to
capture the global spatial-temporal dependency across time
with a concise model framework.

4.5 Components Analysis

To further test and verify the components of the DSTAGCN
model, variant experiments are conducted and analyzed. Dif-
ferent methods of adjacency matrix generation in the Adja-
cencyMatrix GenerationModule and the number of convolution
layers in theGraph ConvolutionModule are evaluated.

4.5.1 Analysis on the Adjacency Matrix Generation

Module

In our method, the adjacency matrix of a spatial-temporal
graph composed of two different time slices is an important
representation of the spatial-temporal relationship, and we
use the fuzzy neural network to generate it in the Adjacency
Matrix Generation Module. Therefore, we design a compara-
tive experiment on how to generate the adjacency matrix,
and also verify the effectiveness of the fuzzy neural network.

The detailed construction of the adjacency matrix AZ
t�i of

the spatial-temporal graph in time slice t� i is in Section 3.1.
Here in this section, five methods of generating the adja-
cency matrix are tested.

� Original ADJ: AZ ¼ A IN
0 A

� �
, whereA is the origi-

nal adjacency matrix of the traffic graph, IN is the
identity matrix. This connection means connecting

each node of a graph at one time slice to itself at
another time slice, which represents the temporal
influence is restricted to the node itself.

� Mask ADJ: AZ ¼ Wmask � A IN
0 A

� �
, where Wmask

is a learnable parameter and represents the different
degrees of influence of the association between
nodes. This method is similar to STSGCN’s [4] proc-
essing of adjacency matrix. The difference is that
STSGCN connects local adjacent time slices, while
this work connects the past and latest time slices.
Both only take the temporal influence of the node
itself into account.

� Learnable Parameters:

AZ ¼ SoftMaxðReLUðE1E
T
2 ÞÞ

where E1;E2 are two node embeddings with fully
learnable parameters. This is similar to the method
of Graph Wavenet [22].

� MLP: This variant removes the fuzzification layer
and rules layer of the proposed DSTAGCN and
replaces them with a fully connected layer that out-
puts the same dimensional features. This constitutes
a simple multi-layer perceptron structure.

� Fuzzy Network: This is the model we proposed in
this work and the detail is described in Section 3.2.
The adjacency matrix is learned from the input data
through a simplified fuzzy neural network.

Based on these variants, we designed two group experi-
ments of static and dynamic according to whether the spa-
tial-temporal graph on each time slice uses an independent
adjacency matrix. This aims to verify the necessity of
dynamically learning the adjacency matrix. Specifically,
static represents that the graph structure on each time slice
is the same and invariable, and dynamic represents that the
graph adjacency matrix on each time slice is independent.

The results of these two groups of experiments on 1-hour
prediction are illustrated in Fig. 7. It is noteworthy that the
performance of STSGCN (as in Table 2 and Table 3) are plot-
ted as a red dotted line in the figure for illustration since it is
the first model to capture the spatial-temporal dependency
synchronously and inspires our work. From the results
shown in Fig. 7, we can find:

(1) The Original ADJ only employs the same and fixed
spatial adjacency matrix within different time slices, and
only considers the correlation across time of the same traffic
node itself, so the performance is the worst. (2) The Mask
ADJ introduces the weight of the influence of each node
based on the Original ADJ and has made progress in the
comparison, but it is still impossible to capture the global
spatial dependency across time only through one convolu-
tional layer. Although this variant adopts an adjacency
matrix construction and weighting method similar to
STSGCN, its effect is inferior to that of STSGCN because the
connected time slices are not locally close, which indicates
that the use of local adjacency correlation is not applicable to
this spatial dependency across time. (3) When the adjacency
matrix is defined as a fully Learnable Parameters, we can see
that it is no longer limited to capture the localized spatial-
temporal relationship, and it performs better than the
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predefined adjacency relationship. This organizational struc-
ture of the spatial-temporal graph we proposed begins to
exert its effect and is superior to STSGCN. (4) TheMLP vari-
ant handilymines the adjacency relationship fromglobal traf-
fic data while it is not always superior to the Learnable
Parametersmethod on all datasets. This demonstrates that the
plain data-driven method may have a strong link with the
instinct of datasets and be prone to obtain mixed perfor-
mance. (5) The result of the Fuzzy Network variant in the com-
parison test is the best, which indicates that the fuzzymethod
performswell not only by simply adding parameters or being
driven by data but also by its promising data inference capa-
bility for such uncertain adjacency relations. (6) The dynamic
results are consistently better than static, which shows that
traffic data tends to have different spatial-temporal correla-
tions at different time slices, i.e., spatial correlations will
change over time. This verifies the importance of simulta-
neously capturing dynamic spatial-temporal correlations.

To intuitively show the dynamic adjacency matrices
learned by DSTAGCN, we visualize the spatial adjacency
matrices and the spatial-temporal adjacency matrices on the
METR-LA dataset in six time slices in Fig. 8. It can be seen
that the adjacency matrix changes over time. The proposed
method captured the dynamics of the traffic correlation in
both spatial and spatial-temporal perspectives.

4.5.2 Other Components Test Analysis

To verify the impact of other components of DSTAGCN, the
following three variant experiments were also conducted
and analyzed:

� DSTAGCN-MGCL: it stacked multiple graph con-
volutional layers in the Graph Convolution Module.

� DSTAGCN-NDP: it removes the dropout layer
when using a fuzzy neural network to generate an
adjacency matrix in the AMLmodule.

Fig. 7. Performance comparison of different generation methods of the adjacency matrix.

Fig. 8. The estimated adjacency matrices on METR-LA dataset in six certain time slices.
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� DSTAGCN-NST: it removes spatial-temporal adja-
cency matrix, which means AST

t�i ¼ 0.
From the test results shown in Fig. 9 and Fig. 10, we can

find:

1) The results of DSTAGCN-MGCL variants show that
setting the number of convolution layers to be 2 or 3 in
the Graph Convolution Module does not significantly
improve the model performance or even worsen it,
while the increasing of parameters brings more train-
ing consumption. This indicates that the adjacency
matrix of the spatial-temporal graph formed by the
connection of the distant time slice and the latest time
slice in our proposed model can represent the global
spatial relationship between the distant location and
the target location, and this relationship can be cap-
turedwith one graph convolution layer. Inmost of the
existing methods, although the global spatial depen-
dencies can be captured indirectly by increasing the
number of convolution layers or the number of diffu-
sion steps (in diffusion graph convolution), the spatial
dependencies captured by them are all in the same
time slice, and the potential time constraints of global
spatial relations are not fully and directly considered.

2) The DSTAGCN-NST simply combines different time
slices to capture spatial relationships simultaneously
but neglects the potential temporal correlations
between them. This variant performs worse than the
proposed DSTAGCN due to the vacant spatial-tem-
poral adjacency matrix, which demonstrates that the
global spatial dependency across time contributes to
the proposed method.

3) The DSTAGCN-NDP model removes the dropout
layer in the Adjacency Matrix Learningmodule, and its
poor performance on PEMS04, PEMS07, and PEMS08
data sets is due to the serious over-fitting on these

datasets. This indicates that the simplified fuzzy neu-
ral network shows its effectiveness by using fuzzy
theory for data inference on the training set, but it is
prone to overfit. In contrast, the DSTAGCN has the
best performance in the test set after employing the
dropout technique to alleviate the overfitting.

4.6 Efficiency Analysis

To illustrate the cost consumption and effectiveness of our
proposed model, we compare the time consumption and
convergence curves of DSTAGCN (the proposed model)
and STSGCN since they both connect graphs from multiple
different time slices to capture spatial-temporal features
and achieve good performance. It should be noted that the
experiments of these two models are carried out in the same
environment on the same device, and have the same batch
size and learning rate.

Here we show the time consumption of the two models
on the PEMS03 dataset, similar results were consistently
shown on other five datasets. It can be seen from Table 4
that the training time of each epoch of our proposed model
only needs 49.5% of that of STSGCN. For inference, we mea-
sure the total time cost on the validation data, DSTAGCN
runs twice as fast as STSGCN. This is because our proposed
model connects fewer time slices (2 slices) to construct the
spatial-temporal graph and sets fewer convolution layers
(only 1 layer in total), despite that parameters are added to
learn the adjacency matrix in the fuzzy neural network part.

Fig. 11 plots the validation MAE curves of the two mod-
els in the training process of one-hour prediction on all
datasets, indicating that our DSTAGCN converges faster
and has lower validation errors than STSGCN. Although
the results compared here are for 200 epochs of training, in
the experiment, when we used the early-stopping tech-
nique, our model quickly achieved better results than
STSGCN after dozens of epochs. The proposed model con-
sistently shows fast convergence and small errors on each
dataset.

4.7 Discussion

Compared to other methods, the proposed model aggre-
gates two graph feature matrix from different time slices
together simply, and simultaneously captures the depen-
dency between distant time and distant space through con-
volution, which avoids error accumulation and parameter
consumption in the RNN-based models. The fuzzy neural
network provides a flexible perspective similar to human
reasoning to obtain uncertain spatial-temporal correlation,
which fuzzies the data through simple membership func-
tions without introducing many parameters. In this way,
the uncertain spatial-temporal dependency can be handily
captured as the adjacency matrix. Based on this framework,

Fig. 9. Performance comparison on DSTAGCN with the different number
of graph convolutional layers.

Fig. 10. Performance comparison on ablation experiments.

TABLE 4
Time Consumption on PEMS03 Dataset

Training time Inference time

STSGCN 107 seconds/epoch 16.7 seconds
DSTAGCN 53 seconds/epoch 7.6 seconds
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only one graph convolution layer is needed to capture the
distant temporal and spatial dependencies and the experi-
ments show the improvement. The current time cost of the
proposed model grows quadratically with the number of
graph nodes. With the number of nodes increases, improv-
ing the time performance is our concern.

5 CONCLUSION

In this work, we proposed a novel Dynamic Spatial-Tempo-
ral Adjacent Graph Convolutional Network (DSTAGCN)
for traffic forecasting. Considering the spatial-temporal
dependency of each node on the traffic network and its
propagation mode, we connect graphs from the latest time
slice with each past time slice to construct the spatial-tem-
poral graph. The adjacency matrix of this spatial-temporal
graph can directly capture the cross-time spatial depen-
dency of the global locations between time slices and the
spatial relations in each time slice. We design a simplified
fuzzy neural network to learn the above inexact spatial-tem-
poral adjacency matrix from the observations. Extensive
experiments on multiple datasets show that our DSTAGCN
model is consistently superior to baselines. And the pro-
posed model achieved a more accurate performance with
faster convergence.

In our future work, we will explore the influence of more
geographic information of the road network (e.g. node dis-
tance) and multi-variate features on the generation of the
adjacency matrix to get further improvements.
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