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Abstract—Citywide traffic flow prediction is of great 

importance to intelligent transportation systems and smart 

cities. Although many deep learning methods have been applied 

for citywide traffic flow prediction, deep learning is a 

deterministic representation and sheds little light on data 

uncertainty. In this paper, a fuzzy-based convolutional LSTM 

neural network (FConvLSTM) method is proposed to improve 

the accuracy of citywide traffic flow prediction by taking data 

uncertainty into consideration. FConvLSTM is a hybrid model 

which combines fuzzy learning with a convolutional LSTM 

neural network (ConvLSTM). The impact of data uncertainty is 

lessened with the help of fuzzy neural networks and ConvLSTM 

is adopted to explore the spatio-temporal characteristics of 

traffic data, which can learn spatial dependencies and temporal 

dependencies jointly. Experimental results on a real dataset 

verify the outperformance of the FConvLSTM method. 

 

I. INTRODUCTION 

Predicting citywide traffic flow plays an essential role in 
traffic management, emergency plan, and public safety[1]. It 
will be helpful to optimize the traffic configuration, guide the 
public to make reasonable travel planning, and mitigate or 
prevent the occurrence of traffic stampede and traffic 
congestions. Citywide traffic flow forecast aims to predict the 
inflow (the number of crowds moving into the region) and 
outflow (the number of crowds going away from the region) 
in each region of a city in the given time interval collectively. 
It is a challenging task since its pattern is influenced by various 
factors involving spatial dependencies between divergent 
regions, temporal dependencies among different time intervals 
as well as external factors like weather, holidays and 
occasional incidents, etc. Massive observed traffic flow data 
may help to extract essential features.  

Deep learning is a data-driven approach, which can learn 
essential features from large amounts of data. Some deep 
learning models have been already developed to deal with 
citywide traffic flow prediction. Zheng et al.[2] put forward 
the ST-ResNet framework. It uses three branches sharing the 
same architecture to model temporal dependencies and, in 
each branch, residual blocks based on convolutional neural 
network (CNN) are used to deal with spatial dependencies. A 
concise deep learning framework called STAR has been 
proposed in [3], which takes one fully-convolutional residual 
network to capture the spatio-temporal dependencies. Xu et 
al.[4] has proposed an entirely CNN-based framework 
PredCNN with cascade convolutions to deal with the spatio-
temporal features of traffic data. In [5], a long short-term 
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memory (LSTM) [5] framework is adopted for extreme 
condition traffic forecasting. Wu et al. [7] have proposed a 
hybrid model that integrates an attention mechanism, CNN 
and LSTM. 

However, these deep learning models remain inaccurate 
due to little consideration on data uncertainty and failing to 
capture spatial and temporal dependencies jointly. Fuzzy 
learning[8], based on fuzzy logic, has its advantages in dealing 
with data uncertainty which is very difficult to be supplanted 
by other learning approaches. Lots of practical problems have 
been well solved using fuzzy learning in image 
processing[10], stock investment [11][12], and Intelligent 
Motor Control [13], etc. Compared with conventional 
deterministic knowledge representation, the fuzzy logic 
representations flexibly construct fuzzy rules to reduce the 
uncertainties in raw data[14]. 

Concerning the above issues, we propose a new model 
called FConvLSTM for improving the citywide traffic flow 
prediction accuracy, which integrates fuzzy learning with deep 
learning. In this model, we applied a fuzzy neural network 
module aiming to reduce data uncertainty. Regarding spatial 
and temporal dependencies, three convolutional LSTM 
(ConvLSTM) [15] modules are used to exploit the spatio-
temporal features based on the temporal proximity to the 
predicted frame. Compared with CNNs or LSTMs, 

ConvLSTM can exploit spatial and temporal features jointly. 
The deep learning representation (the output of ConvLSTM 
module) and the fuzzy learning representation (the output of 
the fuzzy neural network module) are fused and sent to dense 
layers for general learning. In this way, the citywide traffic 
flow can be forecasted more accurately.  

The main contributions of this paper are summarized as 
follows: 

(1) Taking data uncertainty into consideration, a fuzzy deep 

learning method for citywide traffic flow prediction is 

proposed. The proposed FConvLSTM is a combination of 

fuzzy learning with deep learning which explores the 

fuzzy logic expression and deep learning expression of 

traffic data altogether. Moreover, the parameters of 

membership function are learned adaptively that do not 

need to rely on human experience and manual 

intervention. 

(2) An end-to-end fuzzy convolutional LSTM network model 

is designed. The proposed FConvLSTM can capture the 

spatial and temporal features of traffic data jointly. 
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(3) We validate our approach on the real taxi trajectory dataset 

for Beijing. And the experimental results demonstrate the 

outperformance of our approach. 

 

II. PRELIMINARIES  

A. Preliminaries 

Definition 1 Region: For convenience, a city is mapped 
into 𝐼 × 𝐽 grids, where each grid denotes a region as shown in 
Fig. 1(a). 

Definition 2 Inflow/Outflow: For each region, we record 
two measurements on it, namely inflow and outflow. Inflow 
represents the total crowds (i.e. vehicles) entering a certain 
region during a given time interval, while outflow indicates the 
sum of crowds leaving from a certain region. The formulas are 
defined as follows:    

𝑥𝑡
𝑖𝑛,𝑖,𝑗

= ∑ |{𝑘 > 1|𝑔𝑘−1 ∉ (𝑖, 𝑗) ∧ 𝑔𝑘 ∈ (𝑖, 𝑗)}|𝑇𝑟∈ℙ  (1) 

𝑥𝑡
𝑜𝑢𝑡,𝑖,𝑗

= ∑ |{𝑘 ≥ 1|𝑔𝑘 ∈ (𝑖, 𝑗) ∧ 𝑔𝑘+1 ∉ (𝑖, 𝑗)}|𝑇𝑟∈ℙ  (2) 

𝑥𝑡
𝑖𝑛,𝑖,𝑗

and 𝑥𝑡
𝑜𝑢𝑡,𝑖,𝑗

represent the inflow and outflow of the grid 

(𝑖, 𝑗)  during the 𝑡𝑡ℎ  time interval respectively. ℙ  denotes a 

collection of trajectories during 𝑡𝑡ℎ  time interval.  𝑔𝑘  means 

the geographic location of the 𝑘𝑡ℎ point of trajectory 𝑇𝑟. 𝑔𝑘 ∈
(𝑖, 𝑗) indicates that 𝑔𝑘 lies in the grid (𝑖, 𝑗). Hence, 𝑿𝑡

𝑖𝑛  and 
𝑿𝑡

𝑜𝑢𝑡  denotes the inflow matrix and outflow matrix during the 

𝑡𝑡ℎ  time interval respectively, where (𝑿𝑡
𝑖𝑛)

𝑖,𝑗
= 𝑥𝑡

𝑖𝑛,𝑖,𝑗
 , 

(𝑿𝑡
𝑜𝑢𝑡)𝑖,𝑗 = 𝑥𝑡

𝑜𝑢𝑡,𝑖,𝑗
. 

With the definition of region, inflow, and outflow, the 

crowds of the 𝑡𝑡ℎ  time interval of a city can be expressed by a 

tensor 𝑿𝑡 ∈ 𝑅2×𝐼×𝐽  where (𝑿𝑡)0 = 𝑿𝑡
𝑖𝑛 , (𝑿𝑡)1 = 𝑿𝑡

𝑜𝑢𝑡 , the 
outflow matrix 𝑿𝑡

𝑜𝑢𝑡 ∈ 𝑅𝐼×𝐽  is illustrated in Fig 1(b). If we 
periodically record the crowds, we can get a sequence of 𝑿𝑡. 
Thus, the citywide traffic flow prediction problem can be 
defined as follows: 

Problem. Given a sequence of historical observations 
{𝑿𝑡|𝑡 = 0,1, . . . , 𝑛 − 1}, predict{𝑿𝑡|𝑡 = 𝑛, 𝑛 + 1, ⋯ , 𝑛 + 𝑘 −
1}. 

 
Fig. 1. regions of Beijing (a) grid map (b) outflows in every region of Beijing 

B. Convolutional LSTM 

Convolutional LSTM (ConvLSTM)[15] is an extension of 
LSTM, in which convolution is added. It addresses the issue 
that LSTM cannot pay attention to the spatial correlation 
between sequences. The essence of ConvLSTM is similar to 
LSTM, whose key is the cell memory that can alternatively 
remember the past information states. Whether cells are 
visited, recorded, or erased is carefully regulated by three self-
parameterized gates. Each time a new input appears, the input 

gate 𝑖𝑡 determines which new information is going to be stored 
in the cell. In addition, the information to be forgotten about 
the state of the past cell is decided by the forgetting gate 𝑓𝑡. 
And whether the current cell state 𝐶𝑡  can be transmitted to the 
ultimate state ℎ𝑡  is farther manipulated by the output gate 𝑜𝑡 . 
The current state of a certain ConvLSTM cell in the grid is 
determined by the inputs as well as past states of the 
surrounding grids. The key equations are shown in (3):  

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝒳𝑡 + 𝑊ℎ𝑖 ∗ ℋ𝑡−1 + 𝑊𝑐𝑖 ∘ 𝒞𝑡−1 + 𝑏𝑖)

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝒳𝑡 + 𝑊ℎ𝑓 ∗ ℋ𝑡−1 + 𝑊𝑐𝑓 ∘ 𝒞𝑡−1 + 𝑏𝑓)

𝒞𝑡 = 𝑓𝑡 ∘ 𝒞𝑡−1 + 𝑖𝑡 ∘ 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝒳𝑡 + 𝑊ℎ𝑐 ∗ ℋ𝑡−1 + 𝑏𝑐)

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝒳𝑡 + 𝑊ℎ𝑜 ∗ ℋ𝑡−1 + 𝑊𝑐𝑜 ∘ 𝒞𝑡 + 𝑏𝑜)

ℋ𝑡 = 𝑜𝑡 ∘ 𝑡𝑎𝑛ℎ(𝒞𝑡)

(3) 

where ′ ∗′ and ′ ∘ ′ stand for the convolution operation and 
Hadamard product respectively. 

 

III. FUZZY CONVOLUTIONAL LSTM NETWORK 

Traffic flow prediction is influenced by multiple factors, 
including spatial dependencies, temporal dependencies and 
external factors, etc. For spatial correlation, a certain region’s 
inflow is influenced by the outflow of its nearby regions. 
Similarly, the outflow of a region also affects the inflow of its 
surrounding regions. However, as traffic facilities become 
more and more convenient, crowds can also travel from one 
region to another distant region in a short time which indicates 
that the flows of a region can be affected by distant regions. 
Therefore, the flows of a region are not only affected by its 
nearby regions, but also by the farther regions. 

Moreover, traffic flow also contains temporal 
dependencies. By dividing the city into 𝐼 × 𝐽  regions and 
recording the inflow with the outflow of each region, we can 
transform the trajectory data into a series of image-like 
observations {𝑋1, 𝑋2, ⋯ 𝑋𝑡−1}. However, if we put all these 
observations into the model, it will make the whole training 
process non-trivial. Fortunately, based on knowledge in the 
spatial and temporal domain, we know that only a few previous 
keyframes will affect the next keyframe. Therefore, we 
leverage temporal dependencies at three different scales, 
namely close trend, daily trend, and weekly trend to select the 
keyframes for modeling. The close trend means that the traffic 
flow in the nearby time intervals shares similar characteristics, 
daily trend (weekly trend) means that the tendency of traffic 
flow in the nearby time intervals of adjoining days (adjoining 
weeks) is similar. The corresponding frames of close, daily, 
and weekly trend are shown as follows: 

𝑆𝑐 :[ 𝑋𝑡−𝑙𝑐
, 𝑋𝑡−(𝑙𝑐−1), ⋯ , 𝑋𝑡−1]                                             (4) 

𝑆𝑑 :[ 𝑋𝑡−𝑙𝑑×𝑑−𝑟 , ⋯ , 𝑋𝑡−𝑙𝑑×𝑑 , ⋯ , 𝑋𝑡−𝑑−𝑟 ⋯ , 𝑋𝑡−𝑑]                 (5) 

𝑆𝑤 :[ 𝑋𝑡−𝑙𝑤×𝑤−𝑟 , ⋯ 𝑋𝑡−𝑙𝑤×𝑤, ⋯ , 𝑋𝑡−𝑤−𝑟 , ⋯ , 𝑋𝑡−𝑤]              (6) 

where S𝑐 , 𝑆𝑑 , 𝑆𝑤   denote close, daily and weekly trend 
sequence respectively. 𝑙𝑐 , 𝑙𝑑  and 𝑙𝑤  stand for the length of 
close, daily, and weekly trend. 𝑑 and 𝑤 refer to day span and 
week span respectively. 𝑟  represents the length of sub-
fragment. For example, if we set the time interval to 30 
minutes, correspondingly, 𝑑  is 48 (one day has 48-time 
intervals) and w is 336 (one week has 336-time intervals), 
𝑙𝑐 , 𝑙𝑑 , 𝑙𝑤  and 𝑟  are set to 3, 1, 1  and 1  respectively. Then 
[𝑋𝑡−3, 𝑋𝑡−2, 𝑋𝑡−1], [𝑋𝑡−49, 𝑋𝑡−48]and [𝑋𝑡−337, 𝑋𝑡−336] will be 
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selected as keyframes. It is necessary to take into account the 
temporal connections between keyframes in each sequence, 
rather than treating them as separate data features only. 

Attention should also be paid to the effects of external 
factors (weather, temperature, holidays, etc.). For example, 
when the weather is bad (rainy, snowy, thunderstorms), people 
are more inclined to stay at home instead of going out. During 
the holiday season, most people choose to travel, and the 
crowds of each scenic spot increase greatly. 

In addition to the spatio-temporal correlations and external 
factors, the high uncertainty contained in traffic data also 
cannot be ignored. The proposed fuzzy convolutional LSTM 
(FConvLSTM) takes all of the spatial dependencies, temporal 
dependencies, external factors, and data uncertainty into 
account.  

In a nutshell, we use a fuzzy neural network to reduce the 
uncertainty among historical traffic observations and adopt 
multiple layers of ConvLSTM to simultaneously explore the 
spatio-temporal characteristics of historical traffic 
observations. As for external factors, they are manually 
extracted from the external datasets and input into a two-layer 
fully connected neural network. Fig. 2 shows the overall 
framework of the proposed model FConvLSTM. We explore 
the close trend, daily trend, and weekly trend simultaneously. 

Fig. 2. FConvLSTM architecture  

(FN: fuzzy neural network, DN: deep neural network FC: fully-
connected) 

 

A.  Structure of close trend 

The structures of the close trend, daily trend, and weekly 
trend are similar. Taking close trend as an example, its 
structure is composed of four components, namely fuzzy 
neural network (FN), deep neural network (DN), fusion part, 
and general learning part. The detailed structure is shown in 
Fig. 3. In short, the input data go to fuzzy neural network and 
deep neural network to make a fuzzy logic representation 
(black part) and neural representation (blue part) respectively. 
Then, the representations of these two views are combined at 
the fusion layer (green part). In addition, the fused information 
is further transformed sequentially inputting to the final task-
driven layer which performs traffic flow prediction.  In the 
following, we use 𝑙 to denote the currently discussed layer, and 
note that we do not distinguish distinct layers by assigning 

distinct layer symbols 𝑙, 𝑎𝑖
(𝑙)

 refers to the input of  𝑖𝑡ℎ node in 

layer 𝑙, and 𝑜𝑖
(𝑙)

 represents the corresponding output. 

Part 1: fuzzy neural network (FN). The fuzzy neural network 
is based on fuzzy logic representations using simple if-then 
rules, these rules can be flexibly constructed from the input 
data by supervised learning. Input data are flattened in the 
input layer of the fuzzy part which means the inflow and 
outflow data of all grids in the input sequence and their 
interaction are investigated simultaneously. The second layer 
is the fuzzification layer. Each node in the fuzzification layer 
represents a membership function that calculates the degrees 
to which an input node belongs to a certain fuzzy set. Since the 
Gaussian function is the most widely used, it is selected as the 
membership function.  

𝑜𝑖
(𝑙)

= 𝑢𝑖(𝑎𝑘
(𝑙)

) = 𝑒−(𝑎𝑘
(𝑙)

−𝜇𝑖)
2

/𝜎𝑖
2

  ∀𝑖 (7) 

where𝜇𝑖and 𝜎𝑖  denote the center and width of the Gaussian 
function respectively. In the fuzzy rule layer, each node 
represents the “if part” of a fuzzy rule. The number of nodes 
in this layer stands for the rules’ number, usually AND 
operation is performed in the rule layer.  

𝑜𝑖
(𝑙)

= ∏ 𝑜𝑗
(𝑙−1)𝑛

𝑗=1  (8) 

where 𝑛  denotes the nodes’ number on the (𝑙 − 1)𝑡ℎ  layer 

that connected to node 𝑖, and ∏ represents the minimalization 
which acts the AND operation according to the fuzzy theory. 
And the outputs of this layer can be treated as fuzzy degrees. 
In general, a fuzzy neural network also contains a 
normalization layer and a defuzzification layer which perform 
the “then” part of a fuzzy rule. Here, the first three layers of a 
fuzzy neural network are enough for getting the fuzzy logic 
representation. Through the fuzzy neural network part, fuzzy 
degrees of the original input data are transformed and further 
integrated with the deep neural network part. The FN part 
provides a new perspective to deal with massive raw data. It 
extracts the universal information contained in the data 
through several concise fuzzy rules to reduce the uncertainty 
of the data. 

Fig. 3. Structure of close trend 

 
Part 2: Deep neural network (DN). Deep neural network 
explores the concept of neural learning to express input as 
some high-level representation. ConvLSTM is chosen for the 
deep network because of its ability to exploit spatial 
correlation as well as temporal correlation of traffic data 
jointly. To acquire deeper features, multiple ConvLSTMs are 
used as illustrated in Fig. 4. 
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Fig. 4.  Structure of DN 

 
Part 3 Fusion layer. Inspired by recent successes of multi-
modal learning[16], we adopt the fusion concept to integrate 
the fuzzy logic representation (the output of FN) and the deep 
neural representation (the output of DN). In multi-modal 
learning, it is believed that features extracted from a single 
aspect are not representative enough for high-content data. 
Therefore, these methods try to extract multiple features from 
multiple views consistently which are further synthesized into 
high-level representations for various learning tasks. In 
FConvLSTM, deep neural parts are employed to explore the 
spatio-temporal characteristics of traffic data while fuzzy parts 
are adopted to reduce data uncertainty, and then they are fused. 
To better understand the design of FConvLSTM, we can treat 
the outputs of fuzzy parts as features rather than their original 
fuzzy basis. Since the dimension of fuzzy logic representation 
is different from that of neural representation, according to 
[16], we combine them with one fully connected layer as 
follows: 

𝑎𝑖
(𝑙)

= (𝑤𝑑)𝑖
(𝑙)(𝑜𝑑)(𝑙−1) + (𝑤𝑓)

𝑖

(𝑙)
(𝑜𝑓)

(𝑙−1)
+ 𝑏𝑖

(𝑙)
 (9) 

𝑜𝑖
(𝑙)

= 𝑡𝑎𝑛ℎ(𝑎𝑖
(𝑙)

) (10) 

where 𝑜𝑑  and 𝑜𝑓  of denoting the neural representation part and 

the output of fuzzy logic representation part 
respectively. 𝑤𝑑  and 𝑤𝑓  are corresponding learnable 

parameters. For the fusion layer, its number of nodes is the sum 
of the nodes’ number on the last layer of the fuzzy part and 
deep part. Note the outputs of the fusion layer which integrates 
fuzzy degrees and the deep neural representation can be 
regarded as the general representation of input data. 

As for fusion, although there are many other feature 
extraction methods available, fuzzy learning is chosen here for 
the following reasons: firstly, fuzzy learning can deal with the 
uncertainties among data effectively which is very difficult to 
be supplanted by other learning; secondly, fuzzy learning can 
produce soft logic values (fuzzy degrees) in a natural manner 
which is flexible to be fused with the outputs of deep learning; 
thirdly, fuzzy learning supports intelligent parameter learning 
through backpropagation, which can avoid the tedious manual 
tuning process. 

Part 4 General learning. The fusion layer is followed by 
several fully connected layers which are used to perform the 
general learning process. As shown in Fig 3, we conduct two 
fully-connected layers in the actual experiment, and the last 
fully connected layer’s output can be regarded as predicted 𝑿𝑡. 

B. Structure of external factors 

As shown in the left part of Fig. 2, we model the impact of 
external factors by two fully-connected layers: the first layer 

can be regarded as an embedding layer, and the second layer 
is used to map low dimension to high dimension, whose 
number of nodes is 2 × 𝐼 × 𝐽 so that the output of the layer has 
the same shape with 𝑿𝑡. 

C. Fusion  

We first combine the outputs of the close trend, daily trend, 
and weekly trend. Since the impact of these three parts varies 
with different regions, as in Eq. (11), a parametric-matrix-
based fusion is chosen. 

𝑿𝐹𝐶𝑜𝑛𝑣 = 𝑾𝑐 ∘ 𝑿𝑐 + 𝑾𝑑 ∘ 𝑿𝑑 + 𝑾𝑤 ∘ 𝑿𝑤  (11) 

where 𝑿𝑐 , 𝑿𝑑 , 𝑿𝑤  denotes the output of close, daily, and 
weekly trends respectively. And 𝑾𝑐 , 𝑾𝑑, 𝑾𝑤  are 
corresponding learnable parameters, denoting the effect 
degrees of  𝑿𝑐 , 𝑿𝑑 ,  𝑿𝑤  respectively.  

As shown in Fig 2, 𝑿𝐹𝐶𝑜𝑛𝑣  is directly integrated with 𝑿𝐸𝑥𝑡, 
and the tanh function is chosen as the activation function 
because of its faster convergence than the sigmoid function. 

So, the predicted flow at 𝑡𝑡ℎ  time interval can be defined as in 
Eq. (12): 

𝑿̂𝑡 = 𝑡𝑎𝑛ℎ(𝑿𝐹𝐶𝑜𝑛𝑣 + 𝑿𝐸𝑥𝑡) (12) 

where the 𝑿̂𝑡 denotes the predicted flow at 𝑡𝑡ℎ time interval. 

In terms of Eq. (12), the predicted value is obtained and we 
can train our FConvLSTM model by minimizing the mean-
squared error between the predicted values and ground truth 
values. Its cost function is defined as in Eq. (13): 

𝐿(𝜃) = ‖𝑿𝑡 − 𝑿̂𝑡‖
2

2
+ 𝜆𝐿𝑟𝑒𝑔 (13) 

where 𝜃 denotes all learnable parameters in FConvLSTM, 
𝐿𝑟𝑒𝑔  is the L2 regularization term that helps to avoid the 

overfitting problem, and 𝜆 is the coefficient. 

D. Learning algorithm  

Backpropagation through time[17] and Adam[18] 
algorithm is used to train FConvLSTM. However, for deep 
neural networks, over-fitting is easy to happen during the 
training process. To alleviate over-fitting, we apply the 
dropout technique [19]. The core idea of dropout is that 
randomly drop out or ignore some nodes as well as their 
connections from the network during training. Here we choose 
to randomly drop out 𝑝% nodes in the last second dense layer 
of close, daily and weekly trend structure as shown in Fig 2. 
The training process of FConvLSTM with the dropout 
technique is summarized as Algorithm 1. And through 
Algorithm 1, we can get the well-trained FConvLSTM model 
that can be used to predict a single-step or multi-step traffic 
flow in the future. The prediction process is shown in 
Algorithm 2, during which the pre-predicted value can be 
regarded as input data to continue to predict the next step. It 
should be pointed out that 𝑬𝑡 represents future weather data, 
and the real weather data is used here. In real applications, 
forecasting weather can be used as 𝑬𝑡. 
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Algorithm 1 The training of FConvLSTM 

Input: historical observations{𝑿𝑡|𝑡 = 0,1, . . . , 𝑛 − 1} 

External features {𝑬𝑡|𝑡 = 0,1, … , 𝑛 − 1} 

𝑑, 𝑤 represents daily, weekly trend spans respectively 

𝑙𝑐 , 𝑙𝑑 , 𝑙𝑤 denotes the length of close, daily, weekly trend 

correspondingly, 𝑟 is the sub-fragment length 

Output: FConvLSTM model ℳ 

𝐷 = ∅ 

for 𝑡 in range (1, 𝑛): 

𝑺𝑐 = {𝑿𝑡−𝑙𝑐
, 𝑿𝑡−(𝑙𝑐−1), ⋯ , 𝑿𝑡−1};

𝑺𝑑 = {𝑿𝑡−𝑙𝑑×𝑑−𝑟 , ⋯ , 𝑿𝑡−𝑙𝑑×𝑑, ⋯ , 𝑿𝑡−𝑑−𝑟 ⋯ , 𝑿𝑡−𝑑};

𝑺𝑤 = {𝑿𝑡−𝑙𝑤×𝑤−𝑟 , ⋯ 𝑿𝑡−𝑙𝑤×𝑤 , ⋯ , 𝑿𝑡−𝑤−𝑟 ⋯ 𝑿𝑡−𝑤};

 

push ({𝑺𝑐 , 𝑺𝑑 , 𝑺𝑤 , 𝑬𝑡}, 𝑿𝑡) into 𝐷 

end for 

construct the FConvLSTM model as shown in Fig 3 

initialize parameters  

repeat 

randomly select a batch of instances 𝐷𝑏  from D; 

randomly drop out p% nodes of a certain layer, getting 

FConvLSTMremain  and the dropout nodes are labeled as 

FConvLSTMdropout; 

feedforward the FConvLSTMremain , getting the fitting 

error by Eq. (11); 

back-propagate the error and update parameters in 

FConvLSTMremain  

until stopping criteria is met 

return the well-trained FConvLSTM model ℳ 

 

Algorithm 2 single/multi-step prediction of FConvLSTM 

Input: well-trained FConvLSTM model ℳ 

number of looking ahead steps: 𝑘 (𝑘=1 means a single-step 

prediction) 

External features {𝑬𝑡|𝑡 = 𝑛, 𝑛 + 1, … , 𝑛 + 𝑘 − 1} 

Historical observations {𝑿𝑡|𝑡 = 0,1, . . . , 𝑛 − 1} 

 𝑑, 𝑤, 𝑙𝑐 , 𝑙𝑑 , 𝑙𝑤 , 𝑟 same as in Algorithm 1 

Output: {𝑿𝑡|𝑡 = 𝑛, 𝑛 + 1, . . . , 𝑛 + 𝑘 − 1} 

for 𝑡 in range (𝑛, 𝑛 +  𝑘): 

𝑺𝑐 = {𝑿𝑡−𝑙𝑐
, 𝑿𝑡−(𝑙𝑐−1), ⋯ , 𝑿𝑡−1};

𝑺𝑑 = {𝑿𝑡−𝑙𝑑×𝑑−𝑟 , ⋯ , 𝑿𝑡−𝑙𝑑×𝑑, ⋯ , 𝑿𝑡−𝑑−𝑟 ⋯ , 𝑿𝑡−𝑑};

𝑺𝑤 = {𝑿𝑡−𝑙𝑤×𝑤−𝑟 , ⋯ 𝑿𝑡−𝑙𝑤×𝑤 , ⋯ , 𝑿𝑡−𝑤−𝑟 ⋯ 𝑿𝑡−𝑤};

𝑿𝑡 = ℳ(𝑺𝑐 , 𝑺𝑑 , 𝑺𝑤 , 𝑬𝑡) 

 

end for 

return {𝑿𝑡|𝑡 = 𝑛, 𝑛 + 1, . . . , 𝑛 + 𝑘 − 1} 

 

IV. EMPIRICAL STUDY  

A. Experiment Settings 

Environment. The proposed method is implemented using 
python language with Keras and TensorFlow. Our 
experiments mainly run on Windows 10, Intel(R) Xeon(R) 
CPU E5-2620 v4 @ 2.10GHz with 128GB Memory, and 
NVIDIA GeForce GTX 1080Ti. 

Dataset. We evaluated our experiments on a real dataset—
TaxiBJ[2], which consists of two components: traffic data and 
meteorological data. Traffic data in the dataset is from a set of 
GPS trajectories recording by 34000+ taxies in Beijing during 
7/1/2013 – 10/30/2013, 3/1/2014 – 6/30/2014, 3/1/2015 – 
6/30/2015, 11/1/2015 – 4/10/2016. The meteorological data is 
the corresponding weather conditions including weather, 
temperature, wind speed, etc., which is mainly used to explore 
the external factors. During the experiment, we have chosen 
the four weeks’ data (3/13/2016--4/10/2016) as testing data 
and the rest is training data, where the training set and testing 
set contain 12294 and 1344 instances respectively.  

Baselines. We compared our approach with other approaches. 
The descriptions of these approaches are shown as follows. 

 HA: HA refers to Historical Average which is quite plain. 

As its name suggests, it directly treats the average of the 

past values as predictions. 

 ARIMA[20]: ARIMA referring to the autoregressive 

integrated moving average, and is often used as a baseline 

for traffic flow prediction.  

 SARIMA[21]: Seasonal ARIMA, compared with 

ARIMA, seasonal terms are considered. 

 LSTM[6]: LSTM is a special version of RNN, which 

overcomes the limitation that RNN cannot learn long-term 

dependencies. In the experiment, the input sequence length 

of LSTM is one of  {3,6,12}. 

 STGCN[22]: STGCN uses GCN and CNN to model the 

spatial and temporal features and combines them into a 

spatial-temporal block. We define the neighbor of each 

grid as the grid that is directly adjacent to it. 

 T-GCN[23]: T-GCN employs GCN to extract spatial 

hidden features on each input time slice and then captures 

the temporal correlation in a GRU layer. 

 ST-ANN: ST-ANN refers to an artificial neural network 

that selects the values of eight nearby regions and eight 

historical intervals as spatial and temporal features, 

respectively. 

 FDCN[24]: Fuzzy deep convolutional network (FDCN), 

combines a convolutional residual network module with a 

fuzzy module to predict traffic flow. 

 DeepST[25]: A Deep Neural Network based method for 

citywide traffic flow prediction.  

 ST-ResNet[2]: A deep residual network model that 

considers spatial, temporal dependencies, and external 

factors comprehensively. 

 ConvLSTM[15]: ConvLSTM refers to a convolutional 

LSTM network, which has the ability to learn spatial and 

temporal dependencies jointly. 

 STAR[3]: STAR refers to a single fully-convolutional 

residual network. 

B. Implementation Details  

Pre-Processing: In the experiment dataset, Beijing was 
divided into a 32 × 32 grid-map and crowds in each region 
were recorded every 30 minutes, indicating the time interval is 
30 minutes. So, a complete day has 48 records, days with 
records less than 48 are considered incomplete days and should 
be removed. In FConvLSTM, tanh function is chosen as the 
final activation function due to its faster convergence speed 
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than the standard sigmoid function. Since the range of tanh is 
[-1, 1], the min-max normalization approach is adopted for 
scaling the flows of each region into [-1, 1]. And one-hot 
coding is used for external factors. When evaluating the result, 
the data is re-scaled back into normal values to compare with 
the ground truth. 

Hyperparameters: The learnable parameters of the deep 
neural network are initialized with the default value in Keras, 
and the learnable parameters of FN are initialized using the 
normal distribution. All convolutions of ConvLSTM except 
the last layer use 64 filters and the last layer use 2 filters. The 
kernel size of these convolutions is set to 3 ∗ 3 . In the 
experiment, we use two ConvLSTMs. There are 6 
hyperparameters that are 𝑙𝑐 , 𝑙𝑑 , 𝑙𝑤 , 𝑟, 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠(the number 
of nodes in rule layer), dropout rate and learning rate. In the 
experiment, we set 𝑙𝑐 ∈ {0,1,2,3,4,5,6,7,8}, 𝑙𝑑 ∈ {0,1,2,3,4}, 
𝑙𝑤 ∈ {0,1,2,3} ,  𝑟 ∈ {0,1} and 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ∈ {0, ⋯ ,100} .The 
learning rate is set to 0.0002 and the batch size is 32. We 
randomly selected 10% of the training set data as the 
verification set used for early stopping. If the RMSE on the 
verification set remains unchanged within four epochs, we 
carried out early stopping. Afterwards, the entire training data 
is used to continue to train our model for fixed epochs. 

Evaluating: As shown in Eq. (14-16), we measure the 
performance of our method using three metrics: mean absolute 
error (MAE), mean absolute percentage error (MAPE) and 
root-mean-squared-error (RMSE): 

𝑀𝐴𝐸 =
1

𝑧
∑ |𝑥𝑖 − 𝑥̂𝑖|𝑖  (14)  

𝑀𝐴𝑃𝐸 =
1

𝑧
∑

|𝑥𝑖−𝑥𝑖|

𝑥𝑖
 𝑖  (15) 

𝑅𝑀𝑆𝐸 = √
1

𝑧
∑ (𝑥𝑖 − 𝑥̂𝑖)

2
𝑖  (16) 

where 𝑥𝑖  represents the ground truth, 𝑥̂𝑖  is the predicted one,  
𝑥̅ is the average, and 𝑧 represents the total number of predicted 
values. 

Design of experiments: we conduct our experiments on the 
TaxiBJ dataset from the following three parts. 

Comparison with baseline methods.  Firstly, we investigate 
the overall performance under single-step prediction and 
multi-step prediction between FConvLSTM and other 
baselines. 

Comparison with variants of FConvLSTM. We verify the 
effectiveness of the FConvLSTM modeling method by 
comparing it with several FConvLSTM variants. 

Efficiency Analysis. We further discuss the efficiency of 
different methods. 

C. Comparison with Baseline Methods  

1) Evaluation of Single-step Ahead Prediction 
Firstly, we compare the overall performance under single-

step prediction between FConvLSTM and other baselines, and 
single-step prediction refers to the crowds’ prediction of the 
next time interval based on the historical observations. The 
time interval (step length) is set to 30 minutes. As shown in 
Table 1, the proposed FConvLSTM method achieves the 
lowest RMSE among all methods, which is relatively 2.9% 

 
 

better than ST-ResNet and 0.92% better than STAR. More 
specifically, we can see that HA, ARIMA, SARIMA, and 
LSTM do not perform well. The main reason lies in that they 
only consider the temporal dependencies. The effects of 
DeepST, ST-ANN, FDCN, ST-ResNet, and STAR are better 
as they further consider spatial dependencies. However, these 
models do not consider the spatio-temporal dependencies 
jointly. Taking STAR as an example, it uses a single fully-
convolutional residual network to learn the spatio-temporal 
correlations of traffic data where the convolution kernels take 
all frames as channel dimensions and ignore their temporal 
order. FConvLSTM employs ConvLSTM to consider the 
temporal order of different frames and captures the influence 
between frames. Two GCN-based models capture spatial and 
temporal correlations through different deep neural networks, 
while they perform worse than FConvLSTM, which 
demonstrates that the method of graph convolution model 
acting on Euclidean data needs to be further studied. 
Moreover, these methods (except FDCN) also have not 
considered the uncertainties among input data and only use 
deep neural representations to characterize data features. The 
good performance of FConvLSTM (lowest MAE, MAPE, 
RMSE) indicates that considering the data uncertainty and 
temporal order of frames are beneficial to improve the 
prediction accuracy. 

TABLE I.  PERFORMANCE COMPARISON WITH BASELINES  

Model MAE MAPE RMSE 

HA - - 57.69* 

ARIMA - - 22.78* 

SARIMA - - 26.88* 

LSTM 13.20 30.14% 22.33 

STGCN 11.52 26.38% 19.34 

T-GCN 9.63 23.22% 16.68 

ST-ANN 13.77 49.41% 21.53 

FDCN 13.53 135.99%1 18.87 

DeepST 10.46 25.09% 17.48 

ConvLSTM 10.28 28.88% 17.15 

ST-ResNet 9.61 23.77% 16.48 

STAR 9.51 23.67% 16.14 

FConvLSTM 9.34 22.42% 15.99 

(The BASELINE results with * are cited from [25],  

1 The unusual MAPE of FDCN is due to its poor performance in predicting small values (<10, which 

account for 20.49% of the test set). 

2) Evaluation of Multi-step Ahead Prediction 
We also evaluate the performance under multi-step 

prediction between FConvLSTM and other baselines. Multi-
step prediction refers to forecasting traffic flow in multiple 
successive time intervals. We conduct the multi-step 
prediction according to Algorithm 2 with the iterative strategy 
and set the look-ahead steps from 1 to 6. 

As shown in Fig.5, FConvLSTM presents the best results 
among all. T-GCN, ConvLSTM and FConvLSTM perform 
quite well in multi-step ahead prediction, because they all 
explicitly model the temporal dependencies in time frames by 
using RNNs. This shows that paying attention to the temporal 
order of different frames is beneficial. Compared with T-GCN 
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and ConvLSTM, FConvLSTM is relatively less affected by 
iteration error in multi-step ahead prediction due to the 
addition of fuzzy logic representation, which demonstrates the 
effectiveness of fuzzy representation. 

 

Fig. 5.  Multi-step ahead prediction 

D. Comparison with variants of FConvLSTM 

In FConvLSTM, we propose to combine FL and 
ConvLSTM to explore data characteristics. To verify the 
effectiveness of the model, we conduct experiments by using 
partial components or replacing partial components. The 
models and variants are described as follows:  

ConvLSTM: For this variant, we only use the ConvLSTM 
part of FConvLSTM and ignore the fuzzy learning part. This 
variant is mainly for comparison with the proposed method 
FConvLSTM to verify that combining fuzzy learning is 
effective, and to provide a baseline for other variants. 

ANN+ConvLSTM: In this variant, the fuzzy learning part 
is replaced by the ANN. In detail, the fuzzification layer and 
the rule layer of the fuzzy learning part are replaced by a dense 
layer, where the number of nodes in the dense layer is twice 
that of the rule layer for a fair comparison. This variant is 
mainly to evaluate whether FConvLSTM achieves better 
results because of the higher model complexity. 

FConvLSTM-ST311: In this variant, the length of the sub-
fragment is set to zero. [𝑋𝑡−3, 𝑋𝑡−2, 𝑋𝑡−1] ,[𝑋𝑡−48] ,[𝑋𝑡−336] 
frames are selected while the inputs of FConvLSTM are 
[𝑋𝑡−3, 𝑋𝑡−2, 𝑋𝑡−1],[𝑋𝑡−49, 𝑋𝑡−48]and [𝑋𝑡−337, 𝑋𝑡−336]. 

FConvLSTM – External: This variant does not consider the 
influence of external factors. 

Fuzzy + ConvLSTM (FConvLSTM): the proposed model, 
which combines fuzzy learning and ConvLSTM and takes the 
influence of external factors into account. 

Table 2 shows the experimental results of FConvLSTM 
and its several variants. For a fair comparison, the inputs of 
ConvLSTM, ANN + ConvLSTM, and FConvLSTM are the 
same, and they share similar parameter settings. Note that the 
parameters of ConvLSTM in this part are different from other 

parts (eg. single step and multi_step prediction) where the 
ConvLSTM takes the best parameters. Compared with 
ConvLSTM, FConvLSTM can achieve lower RMSE, 
indicating that combining fuzzy learning is effective for 
improving prediction accuracy. And the training time of 
FConvLSTM is very close to that of ConvLSTM, indicating 
that adding the fuzzy neural network module will not increase 
the training time significantly. Furthermore, compared with 
ANN + ConvLSTM (sharing similar model size with 
FConvLSTM), FConvLSTM still achieves better 
performance, which shows that the good performance of 
FConvLSTM is achieved without increasing model 
complexity. It can be seen that FConvLSTM usually gives 
more accurate predictions, which indicates the great 
representation ability of FConvLSTM (the two models share 
the same inputs and model size). Specifically, ANN + 
FConvLSTM has a poor performance in high-flow areas. It 
generates higher values than ground truth. The reason why 
FConvLSTM-ST311 is relatively poor is that the keyframes 
selected are not sufficiently representative. The effect of 
FConvLSTM is better than FConvLSTM–External, indicating 
that the external features from auxiliary information are 
helpful for prediction. 

TABLE  2 COMPARISON WITH FCONVLSTM VARIANTS 

Method RMSE #parameter

s(k) 

Time 

(min) 

ConvLSTM 17.15 500 157 

ANN+ConvLSTM 21.03 38,755 140 

FConvLSTM-ST311 16.22 38,656 145 

FConvLSTM–External 16.37 38,715 152 

FConvLSTM 15.99 38,738 160 

 

E. Efficiency Analysis 

Table 3 shows the performance index of the proposed 
model FConvLSTM compared to several baselines (i.e. T-
GCN, ConvLSTM, ST-ResNet, FDCN, and STAR). It can be 
seen that the RMSE of the proposed method is better than that 
of other methods. Although its training time (160 minutes) is 
not the shortest among those methods, it is still practically 
acceptable. Since the entire training process is carried out 
offline, the training time overhead can be decreased by today’s 
ever-increasing high-speed computing resources. When the 
trained model is applied in prediction, FConvLSTM can 
predict citywide traffic flow in seconds according to our 
experiments.  

TABLE 3 COMPARISON OF RMSE AND TRAINING TIME 

Method RMSE Training time(min) 

FDCN 18.97 148 

ConvLSTM 17.15 253 

T-GCN 16.68 103 

ST-ResNet 16.48 180 

STAR 16.14 46 

FConvLSTM 15.99 160 
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V. CONCLUSION 

In this study, we learn to deal with the citywide traffic flow 

prediction problem from the massive trajectory data. The key 

challenge of this problem is that traffic flow is affected by 

multiple factors such as spatial dependencies, temporal 

dependencies, weather and holiday, etc. Moreover, when data 

quantity gets large, data uncertainty cannot be neglected. To 

address the above issues, we proposed a hybrid method called 

FConvLSTM which combines fuzzy learning and 

convolutional LSTM(ConvLSTM) altogether, where a fuzzy 

neural network based on fuzzy logic is used to reduce the 

uncertainty of data, and ConvLSTM is to jointly capture 

spatial dependencies and temporal dependencies of traffic 

data. Compared with CNN methods, ConvLSTM pays 

attention to the temporal order of input frames and can learn 

the influence between frames. The proposed model 

outperforms several state-of-the-art models in a real dataset 

TaxiBJ. Besides, in transportation management, the proposed 

model can also deal with regression-type problems naturally 

through an end-to-end framework. Despite the good RMSE 

performance, the training time of the proposed methods still 

needs to be improved. The proposed model is for the grid-

based citywide traffic flow prediction problem. It is 

particularly efficient to be applied to traffic prediction on 

regions of a city with quite evenly distributed traffic flow of 

grids of the same size. How to divide the regions of the city 

into grids with variant sizes in terms of real traffic is one of 

our concerns in the future research. 
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