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Abstract—Citywide traffic flow prediction is of great
importance to intelligent transportation systems and smart
cities. Although many deep learning methods have been applied
for citywide traffic flow prediction, deep learning is a
deterministic representation and sheds little light on data
uncertainty. In this paper, a fuzzy-based convolutional LSTM
neural network (FConvLSTM) method is proposed to improve
the accuracy of citywide traffic flow prediction by taking data
uncertainty into consideration. FConvLSTM is a hybrid model
which combines fuzzy learning with a convolutional LSTM
neural network (ConvLSTM). The impact of data uncertainty is
lessened with the help of fuzzy neural networks and ConvLSTM
is adopted to explore the spatio-temporal characteristics of
traffic data, which can learn spatial dependencies and temporal
dependencies jointly. Experimental results on a real dataset
verify the outperformance of the FConvLSTM method.

1. INTRODUCTION

Predicting citywide traffic flow plays an essential role in
traffic management, emergency plan, and public safety[1]. It
will be helpful to optimize the traffic configuration, guide the
public to make reasonable travel planning, and mitigate or
prevent the occurrence of traffic stampede and traffic
congestions. Citywide traffic flow forecast aims to predict the
inflow (the number of crowds moving into the region) and
outflow (the number of crowds going away from the region)
in each region of a city in the given time interval collectively.
It is a challenging task since its pattern is influenced by various
factors involving spatial dependencies between divergent
regions, temporal dependencies among different time intervals
as well as external factors like weather, holidays and
occasional incidents, etc. Massive observed traffic flow data
may help to extract essential features.

Deep learning is a data-driven approach, which can learn
essential features from large amounts of data. Some deep
learning models have been already developed to deal with
citywide traffic flow prediction. Zheng et al.[2] put forward
the ST-ResNet framework. It uses three branches sharing the
same architecture to model temporal dependencies and, in
each branch, residual blocks based on convolutional neural
network (CNN) are used to deal with spatial dependencies. A
concise deep learning framework called STAR has been
proposed in [3], which takes one fully-convolutional residual
network to capture the spatio-temporal dependencies. Xu et
al.[4] has proposed an entirely CNN-based framework
PredCNN with cascade convolutions to deal with the spatio-
temporal features of traffic data. In [5], a long short-term
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memory (LSTM) [5] framework is adopted for extreme
condition traffic forecasting. Wu et al. [7] have proposed a
hybrid model that integrates an attention mechanism, CNN
and LSTM.

However, these deep learning models remain inaccurate
due to little consideration on data uncertainty and failing to
capture spatial and temporal dependencies jointly. Fuzzy
learning[8], based on fuzzy logic, has its advantages in dealing
with data uncertainty which is very difficult to be supplanted
by other learning approaches. Lots of practical problems have
been well solved wusing fuzzy learning in image
processing[10], stock investment [11][12], and Intelligent
Motor Control [13], etc. Compared with conventional
deterministic knowledge representation, the fuzzy logic
representations flexibly construct fuzzy rules to reduce the
uncertainties in raw data[14].

Concerning the above issues, we propose a new model
called FConvLSTM for improving the citywide traffic flow
prediction accuracy, which integrates fuzzy learning with deep
learning. In this model, we applied a fuzzy neural network
module aiming to reduce data uncertainty. Regarding spatial
and temporal dependencies, three convolutional LSTM
(ConvLSTM) [15] modules are used to exploit the spatio-
temporal features based on the temporal proximity to the
predicted frame. Compared with CNNs or LSTMs,
ConvLSTM can exploit spatial and temporal features jointly.
The deep learning representation (the output of ConvLSTM
module) and the fuzzy learning representation (the output of
the fuzzy neural network module) are fused and sent to dense
layers for general learning. In this way, the citywide traffic
flow can be forecasted more accurately.

The main contributions of this paper are summarized as
follows:

(1) Taking data uncertainty into consideration, a fuzzy deep
learning method for citywide traffic flow prediction is
proposed. The proposed FConvLSTM is a combination of
fuzzy learning with deep learning which explores the
fuzzy logic expression and deep learning expression of
traffic data altogether. Moreover, the parameters of
membership function are learned adaptively that do not
need to rely on human experience and manual
intervention.

(2) An end-to-end fuzzy convolutional LSTM network model
is designed. The proposed FConvLSTM can capture the
spatial and temporal features of traffic data jointly.
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(3) We validate our approach on the real taxi trajectory dataset
for Beijing. And the experimental results demonstrate the
outperformance of our approach.

II. PRELIMINARIES

A. Preliminaries

Definition 1 Region: For convenience, a city is mapped
into I X J grids, where each grid denotes a region as shown in
Fig. 1(a).

Definition 2 Inflow/Outflow: For each region, we record
two measurements on it, namely inflow and outflow. Inflow
represents the total crowds (i.e. vehicles) entering a certain
region during a given time interval, while outflow indicates the
sum of crowds leaving from a certain region. The formulas are
defined as follows:

M = Srrepllle > g € WD AGE GO (1)
X = Trrepl{k 2 1gk € QN AGksr € LD ()

xtm'i'j and xf ubLl represent the inflow and outflow of the grid

(i,j) during the t™* time interval respectively. P denotes a
collection of trajectories during t*" time interval. g, means
the geographic location of the k*" point of trajectory Tr.gx €
(i,)) indicates that g, lies in the grid (i,j). Hence, X* and
X¢"t denotes the inflow matrix and outflow matrix during the

in,i,j

t™h time interval respectively, where (X = ,

_ outij
X7y = .

With the definition of region, inflow, and outflow, the
crowds of the t* time interval of a city can be expressed by a
tensor X, € R where (X,), = X*, (X,); = X?% | the
outflow matrix X2** € R/ is illustrated in Fig 1(b). If we
periodically record the crowds, we can get a sequence of X,.
Thus, the citywide traffic flow prediction problem can be
defined as follows:

Problem. Given a sequence of historical observations
{X(t=01,...,n—1}, predict{X, |t =n,n+1,---,n+ k —
1}.

(a) grid map

(b) outflow matrix

Fig. 1. regions of Beijing (a) grid map (b) outflows in every region of Beijing

B. Convolutional LSTM

Convolutional LSTM (ConvLSTM)[15] is an extension of
LSTM, in which convolution is added. It addresses the issue
that LSTM cannot pay attention to the spatial correlation
between sequences. The essence of ConvLSTM is similar to
LSTM, whose key is the cell memory that can alternatively
remember the past information states. Whether cells are
visited, recorded, or erased is carefully regulated by three self-
parameterized gates. Each time a new input appears, the input

gate i, determines which new information is going to be stored
in the cell. In addition, the information to be forgotten about
the state of the past cell is decided by the forgetting gate f;.
And whether the current cell state C; can be transmitted to the
ultimate state h; is farther manipulated by the output gate o;.
The current state of a certain ConvLSTM cell in the grid is
determined by the inputs as well as past states of the
surrounding grids. The key equations are shown in (3):

g = oWy * Xy + Wy x Hyg + Wy Coy + by)

fo = 0(Wys % X + Wy x Hy_q + Wep 0 Coy + by)

Ct = feo Ceoy + iy o tanh(Wee * Xy + Wi * Hy_y + b))
0p = 0(Wyo * Xy + Wi x Hy g + Weo 0 Ce + b,)

H; = o, o tanh(C;)

where ' %' and ' o ' stand for the convolution operation and
Hadamard product respectively.

III. Fuzzy CONVOLUTIONAL LSTM NETWORK

Traffic flow prediction is influenced by multiple factors,
including spatial dependencies, temporal dependencies and
external factors, etc. For spatial correlation, a certain region’s
inflow is influenced by the outflow of its nearby regions.
Similarly, the outflow of a region also affects the inflow of its
surrounding regions. However, as traffic facilities become
more and more convenient, crowds can also travel from one
region to another distant region in a short time which indicates
that the flows of a region can be affected by distant regions.
Therefore, the flows of a region are not only affected by its
nearby regions, but also by the farther regions.

Moreover, traffic flow also contains temporal
dependencies. By dividing the city into I X J regions and
recording the inflow with the outflow of each region, we can
transform the trajectory data into a series of image-like
observations {X;, X,, --- X,_,}. However, if we put all these
observations into the model, it will make the whole training
process non-trivial. Fortunately, based on knowledge in the
spatial and temporal domain, we know that only a few previous
keyframes will affect the next keyframe. Therefore, we
leverage temporal dependencies at three different scales,
namely close trend, daily trend, and weekly trend to select the
keyframes for modeling. The close trend means that the traffic
flow in the nearby time intervals shares similar characteristics,
daily trend (weekly trend) means that the tendency of traffic
flow in the nearby time intervals of adjoining days (adjoining
weeks) is similar. The corresponding frames of close, daily,
and weekly trend are shown as follows:

Se :[Xt—lcﬂXt—(lc—l)' o, Xeoq] “4)
Sa :[Xt—ldxd—r: :Xt—ldxdt o Xe—aor o Xe—dl (%)
Sw :[Xt—lwxw—r' Xt—lwxw’ o Xemwerr s Xe—wl (6)

where S.,S4,S,, denote close, daily and weekly trend
sequence respectively. I.,l; and [, stand for the length of
close, daily, and weekly trend. d and w refer to day span and
week span respectively. r represents the length of sub-
fragment. For example, if we set the time interval to 30
minutes, correspondingly, d is 48 (one day has 48-time
intervals) and w is 336 (one week has 336-time intervals),
l,, 131, and r are set to 3,1,1 and 1 respectively. Then
[Xt—3, Xt—2, Xe—1]s [Xe—s0, Xi—sgland [X;_337, X;_336] Will be

3361

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 12,2025 at 06:05:49 UTC from IEEE Xplore. Restrictions apply.



selected as keyframes. It is necessary to take into account the
temporal connections between keyframes in each sequence,
rather than treating them as separate data features only.

Attention should also be paid to the effects of external
factors (weather, temperature, holidays, etc.). For example,
when the weather is bad (rainy, snowy, thunderstorms), people
are more inclined to stay at home instead of going out. During
the holiday season, most people choose to travel, and the
crowds of each scenic spot increase greatly.

In addition to the spatio-temporal correlations and external
factors, the high uncertainty contained in traffic data also
cannot be ignored. The proposed fuzzy convolutional LSTM
(FConvLSTM) takes all of the spatial dependencies, temporal
dependencies, external factors, and data uncertainty into
account.

In a nutshell, we use a fuzzy neural network to reduce the
uncertainty among historical traffic observations and adopt
multiple layers of ConvLSTM to simultaneously explore the
spatio-temporal  characteristics ~of  historical traffic
observations. As for external factors, they are manually
extracted from the external datasets and input into a two-layer
fully connected neural network. Fig. 2 shows the overall
framework of the proposed model FConvLSTM. We explore
the close trend, daily trend, and weekly trend simultaneously.

X,
XFConv‘
FCs ‘ X, Xq I X
f [ o | [[_pewe T o ])
[ Dense iopour)”| [ Dum ) ‘ [ Dense (Dropoun |
Exact L]
Features | 1'1151011 Layer | | Fusxon Layu ‘ | Fusion Layer
1 h
| Weeky Trend ] n,;-y Trend ] \ [ Close Trend
e ...... W“ . HJ |
Weekend! . mi e
1

Meteorological
Data Traffic Data

Fig. 2. FConvLSTM architecture
(FN: fuzzy neural network, DN: deep neural network FC: fully-
connected)

A. Structure of close trend

The structures of the close trend, daily trend, and weekly
trend are similar. Taking close trend as an example, its
structure is composed of four components, namely fuzzy
neural network (FN), deep neural network (DN), fusion part,
and general learning part. The detailed structure is shown in
Fig. 3. In short, the input data go to fuzzy neural network and
deep neural network to make a fuzzy logic representation
(black part) and neural representation (blue part) respectively.
Then, the representations of these two views are combined at
the fusion layer (green part). In addition, the fused information
is further transformed sequentially inputting to the final task-
driven layer which performs traffic flow prediction. In the
following, we use [ to denote the currently discussed layer, and
note that we do not distinguish distinct layers by assigning

distinct layer symbols [, al.(l) refers to the input of i*" node in

layer I, and oi(l) represents the corresponding output.

Part 1: fuzzy neural network (FN). The fuzzy neural network
is based on fuzzy logic representations using simple if-then
rules, these rules can be flexibly constructed from the input
data by supervised learning. Input data are flattened in the
input layer of the fuzzy part which means the inflow and
outflow data of all grids in the input sequence and their
interaction are investigated simultaneously. The second layer
is the fuzzification layer. Each node in the fuzzification layer
represents a membership function that calculates the degrees
to which an input node belongs to a certain fuzzy set. Since the
Gaussian function is the most widely used, it is selected as the
membership function.

1 2

o = u(a’) = e’ H) /ot vy (M)

wherey;and o; denote the center and width of the Gaussian
function respectively. In the fuzzy rule layer, each node
represents the “if part” of a fuzzy rule. The number of nodes
in this layer stands for the rules’ number, usually AND
operation is performed in the rule layer.
ol =TTy o'V ®)
where n denotes the nodes’ number on the (I — 1)th layer
that connected to node i, and [] represents the minimalization
which acts the AND operation according to the fuzzy theory.
And the outputs of this layer can be treated as fuzzy degrees.
In general, a fuzzy neural network also contains a
normalization layer and a defuzzification layer which perform
the “then” part of a fuzzy rule. Here, the first three layers of a
fuzzy neural network are enough for getting the fuzzy logic
representation. Through the fuzzy neural network part, fuzzy
degrees of the original input data are transformed and further
integrated with the deep neural network part. The FN part
provides a new perspective to deal with massive raw data. It
extracts the universal information contained in the data
through several concise fuzzy rules to reduce the uncertainty
of the data.

Task-driven Layer [O O ...... OJ — X,
I Fusion DN Layers

. N N I
Fusion Layer ] ( | JPTTYTTO | 3

_\/ N e

-

FN O O O Furry le Lager | | DN/ weeee |
Ol I OROFIO
Membership Yy '
NN

@@ @ @ @ @ @ @ @ funumnuwr Q I
O O O

Fig. 3. Structure of close trend

Input Layer

Part 2: Deep neural network (DN). Deep neural network
explores the concept of neural learning to express input as
some high-level representation. ConvLSTM is chosen for the
deep network because of its ability to exploit spatial
correlation as well as temporal correlation of traffic data
jointly. To acquire deeper features, multiple ConvLSTMs are
used as illustrated in Fig. 4.
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Input layer ConvLSTM 1 ConvLSTM 2 ConvLSTM L

Fig. 4. Structure of DN

Part 3 Fusion layer. Inspired by recent successes of multi-
modal learning[16], we adopt the fusion concept to integrate
the fuzzy logic representation (the output of FN) and the deep
neural representation (the output of DN). In multi-modal
learning, it is believed that features extracted from a single
aspect are not representative enough for high-content data.
Therefore, these methods try to extract multiple features from
multiple views consistently which are further synthesized into
high-level representations for various learning tasks. In
FConvLSTM, deep neural parts are employed to explore the
spatio-temporal characteristics of traffic data while fuzzy parts
are adopted to reduce data uncertainty, and then they are fused.
To better understand the design of FConvLSTM, we can treat
the outputs of fuzzy parts as features rather than their original
fuzzy basis. Since the dimension of fuzzy logic representation
is different from that of neural representation, according to
[16], we combine them with one fully connected layer as
follows:

l l - ® -1 1
a;) = W) )V + (wy), (o)) +0” ()

ol.(l) = tanh(ai(l)) (10)
where 04 and of of denoting the neural representation part and
the output of fuzzy logic representation part
respectively. w, and wy are corresponding learnable
parameters. For the fusion layer, its number of nodes is the sum
of the nodes’ number on the last layer of the fuzzy part and
deep part. Note the outputs of the fusion layer which integrates
fuzzy degrees and the deep neural representation can be
regarded as the general representation of input data.

As for fusion, although there are many other feature
extraction methods available, fuzzy learning is chosen here for
the following reasons: firstly, fuzzy learning can deal with the
uncertainties among data effectively which is very difficult to
be supplanted by other learning; secondly, fuzzy learning can
produce soft logic values (fuzzy degrees) in a natural manner
which is flexible to be fused with the outputs of deep learning;
thirdly, fuzzy learning supports intelligent parameter learning
through backpropagation, which can avoid the tedious manual
tuning process.

Part 4 General learning. The fusion layer is followed by
several fully connected layers which are used to perform the
general learning process. As shown in Fig 3, we conduct two
fully-connected layers in the actual experiment, and the last
fully connected layer’s output can be regarded as predicted X;.

B. Structure of external factors

As shown in the left part of Fig. 2, we model the impact of
external factors by two fully-connected layers: the first layer

can be regarded as an embedding layer, and the second layer
is used to map low dimension to high dimension, whose
number of nodes is 2 X I X J so that the output of the layer has
the same shape with X;.

C. Fusion

We first combine the outputs of the close trend, daily trend,
and weekly trend. Since the impact of these three parts varies
with different regions, as in Eq. (11), a parametric-matrix-
based fusion is chosen.

XFConVZWCOXc+Wd°Xd+Ww°XW (11)

where X., X;, X,, denotes the output of close, daily, and
weekly  trends respectively. And W W, W, are
corresponding learnable parameters, denoting the effect
degrees of X., X4, X, respectively.

As shown in Fig 2, X, is directly integrated with Xz,
and the fanh function is chosen as the activation function
because of its faster convergence than the sigmoid function.
So, the predicted flow at t*" time interval can be defined as in
Eq. (12):

jZt = tan]l(XFConv + Xgxt) (12)
where the X, denotes the predicted flow at t** time interval.

In terms of Eq. (12), the predicted value is obtained and we
can train our FConvLSTM model by minimizing the mean-
squared error between the predicted values and ground truth
values. Its cost function is defined as in Eq. (13):

L(®) = [|X; = Re||} + AlLyeg (13)
where 6 denotes all learnable parameters in FConvLSTM,
Lyeg is the L2 regularization term that helps to avoid the
overfitting problem, and A is the coefficient.

D. Learning algorithm

Backpropagation through time[17] and Adam[18]
algorithm is used to train FConvLSTM. However, for deep
neural networks, over-fitting is easy to happen during the
training process. To alleviate over-fitting, we apply the
dropout technique [19]. The core idea of dropout is that
randomly drop out or ignore some nodes as well as their
connections from the network during training. Here we choose
to randomly drop out p% nodes in the last second dense layer
of close, daily and weekly trend structure as shown in Fig 2.
The training process of FConvLSTM with the dropout
technique is summarized as Algorithm 1. And through
Algorithm 1, we can get the well-trained FConvLSTM model
that can be used to predict a single-step or multi-step traffic
flow in the future. The prediction process is shown in
Algorithm 2, during which the pre-predicted value can be
regarded as input data to continue to predict the next step. It
should be pointed out that E; represents future weather data,
and the real weather data is used here. In real applications,
forecasting weather can be used as E,.
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Algorithm 1 The training of FConvLSTM

Input: historical observations{X,|t = 0,1,...,n — 1}
External features {E;|t = 0,1, ...,n — 1}

d,w represents daily, weekly trend spans respectively
l., 14, 1, denotes the length of close, daily, weekly trend
correspondingly, 7 is the sub-fragment length
Output: FConvLSTM model M

D=9

for t in range (1,n):

S, = {Xt—lc'Xt—(lc—l)' ""Xt—l};

Sa= {Xt—ldxd—r' o Xetgxar Xe—a-r ""Xt—d};
Sy = {Xt—lwxw—r' Xt—lwxw' o Xewer Xt—w}:

puSh ({SCI Sd! SW! Et}! Xt) into D

end for

construct the FConvLSTM model as shown in Fig 3

initialize parameters

repeat
randomly select a batch of instances D, from D;
randomly drop out p% nodes of a certain layer, getting
FConvLSTM epmain and the dropout nodes are labeled as
FConvLSTMgropout;
feedforward the FConvLSTM emain. getting the fitting
error by Eq. (11);
back-propagate the error and update parameters in
FConvLSTM emain

until stopping criteria is met

return the well-trained FConvLSTM model M

Algorithm 2 single/multi-step prediction of FConvLSTM
Input: well-trained FConvLSTM model M
number of looking ahead steps: k (k=1 means a single-step
prediction)
External features {E/|t =n,n+1,..,n+ k — 1}
Historical observations {X,|t = 0,1,...,n — 1}
d,w,l. 14 1,1 same as in Algorithm 1
Output: {X,|t=nn+1,...,n+k—1}
for t inrange (n,n + k):
S, = {Xt—lcht—(lc—l)' ""Xt—l};
Sy = {Xt—ldxd—r' o Xegxar Xe—a-r e Xe—al;
Sw = {Xt—lwxw—‘r' X pysws s Xpmwor o Xt—w};
Xt = M(SC' SdlSW' Et)
end for
return {X,|t=nn+1,...,n+ k—1}

IV. EMPIRICAL STUDY

A. Experiment Settings

Environment. The proposed method is implemented using
python language with Keras and TensorFlow. Our
experiments mainly run on Windows 10, Intel(R) Xeon(R)
CPU E5-2620 v4 @ 2.10GHz with 128GB Memory, and
NVIDIA GeForce GTX 1080Ti.

Dataset. We evaluated our experiments on a real dataset—
TaxiBJ[2], which consists of two components: traffic data and
meteorological data. Traffic data in the dataset is from a set of
GPS trajectories recording by 34000+ taxies in Beijing during
7/1/2013 — 10/30/2013, 3/1/2014 — 6/30/2014, 3/1/2015 —
6/30/2015, 11/1/2015 —4/10/2016. The meteorological data is
the corresponding weather conditions including weather,
temperature, wind speed, etc., which is mainly used to explore
the external factors. During the experiment, we have chosen
the four weeks’ data (3/13/2016--4/10/2016) as testing data
and the rest is training data, where the training set and testing
set contain 12294 and 1344 instances respectively.

Baselines. We compared our approach with other approaches.
The descriptions of these approaches are shown as follows.

* HA: HA refers to Historical Average which is quite plain.
As its name suggests, it directly treats the average of the
past values as predictions.

* ARIMAJ20]: ARIMA referring to the autoregressive
integrated moving average, and is often used as a baseline
for traffic flow prediction.

* SARIMA|21]: Seasonal ARIMA,
ARIMA, seasonal terms are considered.

e LSTMJ6]: LSTM is a special version of RNN, which
overcomes the limitation that RNN cannot learn long-term
dependencies. In the experiment, the input sequence length
of LSTM is one of {3,6,12}.

* STGCN]J22]: STGCN uses GCN and CNN to model the
spatial and temporal features and combines them into a
spatial-temporal block. We define the neighbor of each
grid as the grid that is directly adjacent to it.

* T-GCNJ23]: T-GCN employs GCN to extract spatial
hidden features on each input time slice and then captures
the temporal correlation in a GRU layer.

* ST-ANN: ST-ANN refers to an artificial neural network
that selects the values of eight nearby regions and eight
historical intervals as spatial and temporal features,
respectively.

* FDCNJ24]: Fuzzy deep convolutional network (FDCN),
combines a convolutional residual network module with a
fuzzy module to predict traffic flow.

* DeepST[25]: A Deep Neural Network based method for
citywide traffic flow prediction.

e ST-ResNet[2]: A deep residual network model that
considers spatial, temporal dependencies, and external
factors comprehensively.

* ConvLSTM]15]: ConvLSTM refers to a convolutional
LSTM network, which has the ability to learn spatial and
temporal dependencies jointly.

* STARJ3]: STAR refers to a single fully-convolutional
residual network.

compared with

B. Implementation Details

Pre-Processing: In the experiment dataset, Beijing was
divided into a 32 X 32 grid-map and crowds in each region
were recorded every 30 minutes, indicating the time interval is
30 minutes. So, a complete day has 48 records, days with
records less than 48 are considered incomplete days and should
be removed. In FConvLSTM, tanh function is chosen as the
final activation function due to its faster convergence speed
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than the standard sigmoid function. Since the range of tanh is
[-1, 1], the min-max normalization approach is adopted for
scaling the flows of each region into [-1, 1]. And one-hot
coding is used for external factors. When evaluating the result,
the data is re-scaled back into normal values to compare with
the ground truth.

Hyperparameters: The learnable parameters of the deep
neural network are initialized with the default value in Keras,
and the learnable parameters of FN are initialized using the
normal distribution. All convolutions of ConvLSTM except
the last layer use 64 filters and the last layer use 2 filters. The
kernel size of these convolutions is set to 3 * 3. In the
experiment, we use two ConvLSTMs. There are 6
hyperparameters that are ., 1y, L, 7, Nyeurons(the number
of nodes in rule layer), dropout rate and learning rate. In the
experiment, we set . € {0,1,2,3,4,5,6,7,8}, l; € {0,1,2,3,4},
I, €{0,1,23}, r €{0,1} and n,eyrons € {0,::-,100} .The
learning rate is set to 0.0002 and the batch size is 32. We
randomly selected 10% of the training set data as the
verification set used for early stopping. If the RMSE on the
verification set remains unchanged within four epochs, we
carried out early stopping. Afterwards, the entire training data
is used to continue to train our model for fixed epochs.

Evaluating: As shown in Eq. (14-16), we measure the
performance of our method using three metrics: mean absolute
error (MAE), mean absolute percentage error (MAPE) and
root-mean-squared-error (RMSE):

1 ~
MAE = -%; |x; — %] (14
_ 1y Ixi—%
MAPE =2 5,~=5 (15)
RMSE = |2%(x; — ;)2 (16)

where x; represents the ground truth, X; is the predicted one,
X is the average, and z represents the total number of predicted
values.

Design of experiments: we conduct our experiments on the
TaxiBJ dataset from the following three parts.

Comparison with baseline methods. Firstly, we investigate
the overall performance under single-step prediction and
multi-step prediction between FConvLSTM and other
baselines.

Comparison with variants of FConvLSTM. We verify the
effectiveness of the FConvLSTM modeling method by
comparing it with several FConvLSTM variants.

Efficiency Analysis. We further discuss the efficiency of
different methods.

C. Comparison with Baseline Methods

1) Evaluation of Single-step Ahead Prediction

Firstly, we compare the overall performance under single-
step prediction between FConvLSTM and other baselines, and
single-step prediction refers to the crowds’ prediction of the
next time interval based on the historical observations. The
time interval (step length) is set to 30 minutes. As shown in
Table 1, the proposed FConvLSTM method achieves the
lowest RMSE among all methods, which is relatively 2.9%

better than ST-ResNet and 0.92% better than STAR. More
specifically, we can see that HA, ARIMA, SARIMA, and
LSTM do not perform well. The main reason lies in that they
only consider the temporal dependencies. The effects of
DeepST, ST-ANN, FDCN, ST-ResNet, and STAR are better
as they further consider spatial dependencies. However, these
models do not consider the spatio-temporal dependencies
jointly. Taking STAR as an example, it uses a single fully-
convolutional residual network to learn the spatio-temporal
correlations of traffic data where the convolution kernels take
all frames as channel dimensions and ignore their temporal
order. FConvLSTM employs ConvLSTM to consider the
temporal order of different frames and captures the influence
between frames. Two GCN-based models capture spatial and
temporal correlations through different deep neural networks,
while they perform worse than FConvLSTM, which
demonstrates that the method of graph convolution model
acting on Euclidean data needs to be further studied.
Moreover, these methods (except FDCN) also have not
considered the uncertainties among input data and only use
deep neural representations to characterize data features. The
good performance of FConvLSTM (lowest MAE, MAPE,
RMSE) indicates that considering the data uncertainty and
temporal order of frames are beneficial to improve the
prediction accuracy.

TABLE L PERFORMANCE COMPARISON WITH BASELINES
Model MAE MAPE RMSE
HA - - 57.69*
ARIMA - - 22.78%
SARIMA - - 26.88*
LSTM 13.20 30.14% 22.33
STGCN 11.52 26.38% 19.34
T-GCN 9.63 23.22% 16.68
ST-ANN 13.77 49.41% 21.53
FDCN 13.53 135.99%! 18.87
DeepST 10.46 25.09% 17.48
ConvLSTM 10.28 28.88% 17.15
ST-ResNet 9.61 23.77% 16.48
STAR 9.51 23.67% 16.14
FConvLSTM 9.34 22.42% 15.99

(The BASELINE results with * are cited from [25],

! The unusual MAPE of FDCN is due to its poor performance in predicting small values (<10, which
account for 20.49% of the test set).

2) Evaluation of Multi-step Ahead Prediction

We also evaluate the performance under multi-step
prediction between FConvLSTM and other baselines. Multi-
step prediction refers to forecasting traffic flow in multiple
successive time intervals. We conduct the multi-step
prediction according to Algorithm 2 with the iterative strategy
and set the look-ahead steps from 1 to 6.

As shown in Fig.5, FConvLSTM presents the best results
among all. T-GCN, ConvLSTM and FConvLSTM perform
quite well in multi-step ahead prediction, because they all
explicitly model the temporal dependencies in time frames by
using RNNs. This shows that paying attention to the temporal
order of different frames is beneficial. Compared with T-GCN
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and ConvLSTM, FConvLSTM is relatively less affected by
iteration error in multi-step ahead prediction due to the
addition of fuzzy logic representation, which demonstrates the
effectiveness of fuzzy representation.

40
FDCN
ST-ResNet
35 1| —e—sTAR
ConvLSTM
w 30 7| —*-T-GCN
2 —e—FConvLSTM
= o5 |
20 -
15 : ! ! ! ! !
1 2 3 4 5 6

#look-ahead step
Fig. 5. Multi-step ahead prediction

D. Comparison with variants of FConvLSTM

In FConvLSTM, we propose to combine FL and
ConvLSTM to explore data characteristics. To verify the
effectiveness of the model, we conduct experiments by using
partial components or replacing partial components. The
models and variants are described as follows:

ConvLSTM: For this variant, we only use the ConvLSTM
part of FConvLSTM and ignore the fuzzy learning part. This
variant is mainly for comparison with the proposed method
FConvLSTM to verify that combining fuzzy learning is
effective, and to provide a baseline for other variants.

ANN+ConvLSTM: In this variant, the fuzzy learning part
is replaced by the ANN. In detail, the fuzzification layer and
the rule layer of the fuzzy learning part are replaced by a dense
layer, where the number of nodes in the dense layer is twice
that of the rule layer for a fair comparison. This variant is
mainly to evaluate whether FConvLSTM achieves better
results because of the higher model complexity.

FConvLSTM-ST311: In this variant, the length of the sub-
fragment is set to zero. [X;_3, X;_, Xt—1],[X¢_4s], [X¢—336]
frames are selected while the inputs of FConvLSTM are
[Xt—3, Xe—2, Xe—11.[Xi—40, Xt—_sgland [X;_337, X¢_336]-

FConvLSTM — External: This variant does not consider the
influence of external factors.

Fuzzy + ConvLSTM (FConvLSTM): the proposed model,
which combines fuzzy learning and ConvLSTM and takes the
influence of external factors into account.

Table 2 shows the experimental results of FConvLSTM
and its several variants. For a fair comparison, the inputs of
ConvLSTM, ANN + ConvLSTM, and FConvLSTM are the
same, and they share similar parameter settings. Note that the
parameters of ConvLSTM in this part are different from other

parts (eg. single step and multi step prediction) where the
ConvLSTM takes the best parameters. Compared with
ConvLSTM, FConvLSTM can achieve lower RMSE,
indicating that combining fuzzy learning is effective for
improving prediction accuracy. And the training time of
FConvLSTM is very close to that of ConvLSTM, indicating
that adding the fuzzy neural network module will not increase
the training time significantly. Furthermore, compared with
ANN + ConvLSTM (sharing similar model size with
FConvLSTM), FConvLSTM  still  achieves  better
performance, which shows that the good performance of
FConvLSTM is achieved without increasing model
complexity. It can be seen that FConvLSTM usually gives
more accurate predictions, which indicates the great
representation ability of FConvLSTM (the two models share
the same inputs and model size). Specifically, ANN +
FConvLSTM has a poor performance in high-flow areas. It
generates higher values than ground truth. The reason why
FConvLSTM-ST311 is relatively poor is that the keyframes
selected are not sufficiently representative. The effect of
FConvLSTM is better than FConvLSTM—External, indicating
that the external features from auxiliary information are
helpful for prediction.

TABLE 2 COMPARISON WITH FCONVLSTM VARIANTS

Method RMSE  #parameter Time
s(k) (min)
ConvLSTM 17.15 500 157
ANN-+ConvLSTM 21.03 38,755 140
FConvLSTM-ST311 16.22 38,656 145
FConvLSTM-External 16.37 38,715 152
FConvLSTM 15.99 38,738 160

E. Efficiency Analysis

Table 3 shows the performance index of the proposed
model FConvLSTM compared to several baselines (i.e. T-
GCN, ConvLSTM, ST-ResNet, FDCN, and STAR). It can be
seen that the RMSE of the proposed method is better than that
of other methods. Although its training time (160 minutes) is
not the shortest among those methods, it is still practically
acceptable. Since the entire training process is carried out
offline, the training time overhead can be decreased by today’s
ever-increasing high-speed computing resources. When the
trained model is applied in prediction, FConvLSTM can
predict citywide traffic flow in seconds according to our
experiments.

TABLE 3 COMPARISON OF RMSE AND TRAINING TIME

Method RMSE Training time(min)
FDCN 18.97 148

ConvLSTM 17.15 253

T-GCN 16.68 103

ST-ResNet 16.48 180

STAR 16.14 46

FConvLSTM  15.99 160
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V. CONCLUSION

In this study, we learn to deal with the citywide traffic flow
prediction problem from the massive trajectory data. The key
challenge of this problem is that traffic flow is affected by
multiple factors such as spatial dependencies, temporal
dependencies, weather and holiday, etc. Moreover, when data
quantity gets large, data uncertainty cannot be neglected. To
address the above issues, we proposed a hybrid method called
FConvLSTM  which combines fuzzy learning and
convolutional LSTM(ConvLSTM) altogether, where a fuzzy
neural network based on fuzzy logic is used to reduce the
uncertainty of data, and ConvLSTM is to jointly capture
spatial dependencies and temporal dependencies of traffic
data. Compared with CNN methods, ConvLSTM pays
attention to the temporal order of input frames and can learn
the influence between frames. The proposed model
outperforms several state-of-the-art models in a real dataset
TaxiBJ. Besides, in transportation management, the proposed
model can also deal with regression-type problems naturally
through an end-to-end framework. Despite the good RMSE
performance, the training time of the proposed methods still
needs to be improved. The proposed model is for the grid-
based citywide traffic flow prediction problem. It is
particularly efficient to be applied to traffic prediction on
regions of a city with quite evenly distributed traffic flow of
grids of the same size. How to divide the regions of the city
into grids with variant sizes in terms of real traffic is one of
our concerns in the future research.
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