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Abstract—Traffic flow forecasting is indispensable in modern
urban life. Considering the complexity, variability and strong
timeliness of traffic flow, traffic flow forecasting is a worth explor-
ing but challenging research field. To achieve better traffic flow
forecasting effect, we focus on two critical aspects that assume
noteworthy importance: i) the features inside the traffic outflows
and inflows. ii) the supplementary information regarding exterior
region which is the area outside the grid division regions. To
address these challenges, we propose a novel deep learning model
Spatial-Temporal Flow Holistic Interaction Graph Convolution
Network (STHGCN). In STHGCN, graph convolution based
modules are applied through multi-step simulation. An exterior
region feature estimation module is designed to estimate the
influence of the special exterior region through the characteristics
of complete trajectories, which enables a more comprehensive
reasoning for traffic flow forecasting in grid division regions.
Furthermore, a flow feature fusion integrator and stackable
convolution modules are proposed to aggregate the intermediate
features extracted from various perspectives, which simulate the
constantly-updating and interlinked states of traffic flows through
the process of multi-layer feature separation and fusion. We
conduct extensive experiments on real-world traffic datasets and
our proposed model outperforms all baselines.

I. INTRODUCTION

As a crucial component of intelligent transportation systems,
traffic flow prediction has significant implications for various
aspects of urban life. Despite the significant progress in traffic
flow forecasting through numerous studies, we still have two
noteworthy observations.

Firstly, there are inter-relationships and intra-relationships
in traffic flows. The inter-relationships refer to the interaction
of traffic inflow and outflow among regions (inflow-outflow).
There exists a strong relationship between traffic inflow and
outflow which is due to the fact that regional traffic flow
data is usually derived from trajectory information statistics.
As shown in Fig 1(a), passenger A hails a taxicab at 8:45
from home to hospital and arrives at 9:15. The boarding and
disembarkation of this trip corresponds to an outflow of the
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Fig. 1. Examples of traffic transfers and traffic flow relationship.

departure region and an inflow of the target region with cause-
and-effect sequence. After the arrival, the passenger receives
a medical diagnosis and leaves at 11:00. The taxi driver drives
around and receives the next order at a nearby hotel at 9:30.
In this situation, the inflow of hospital region at 9:15 leads to
the outflow of the nearby regions at 9:30 and 11:00. The intra-
relationships in traffic flows refer to the correlations among
either the inflows of regions or the outflows of regions (inflow-
inflow, outflow-outflow). For example, there are similarities in
the intra-relationships within traffic flows. As shown in Fig.
1(b) and Fig. 1(c), in the morning of weekday, the inflow
patterns of region 3, 5, 6 are similar while the outflow patterns
are not.

Secondly, most of the previous traffic flow forecasting mod-
els merely pay attention to the grid division regions. However,
they neglect the traffic transfers between the grid division
regions and the area outside. As shown in Fig. 1(d), transfer
1 and 2 are typical transfers among grid division regions.
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While transfer 3, occurring between grid division regions
and the special exterior region, warrants extra attention. We
can regard the outside area as a large special region. In the
context of traffic prediction, this region operates analogously
to others, exhibiting characteristics such as traffic flow volume
and interactions with neighboring regions.

To address these challenges, we propose a Spatial-
Temporal Flow Holistic Interaction Graph Convolution
Network (STHGCN), the main contributions of this work are
summarized as follows:

• The inter-relationships and intra-relationships in regional
traffic flows are captured for modeling the complex
spatial-temporal dependency.

• A special exterior region is taken into account. The sup-
plementary traffic features of such region are estimated
and used to assist the flow prediction of grid division
regions.

• We conduct experiments on four real-world traffic
datasets. The results show that our proposed model ob-
tains significant improvements over the baseline methods.

II. RELATED WORK

Traffic flow forecasting has always been a hot topic. Typ-
ically, such forecasting endeavors commence by considering
both the temporal and spatial dimensions.

For temporal feature modeling of traffic data, RNN [1]
and its variants are commonly used. Temporal Convolutional
Networks (TCN) employs convolution structure at temporal
processing [2]. Yu et al. adopt pure convolution structure
to extract spatio-temporal information from the traffic graph
data [3]. Oord et al. propose dilated causal convolution for
the efficient capture of long-range temporal dependencies [4].
Researchers also utilize the transformer model for time series
processing [5]. For spatial feature modeling, the graph con-
volutional neural network has been widely applied. For traffic
data, Li et al. propose a convolutional model by analoging the
diffusion model [6]. More recently, transformer-based models
show promising results in capturing traffic spatial feature [7].
In this paper, our proposed model STHGCN employs the
TCN method based on causal convolution for temporal feature
processing and graph convolution method for spatial feature
processing.

For regional traffic flow prediction, there are also abundant
research achievements. Considering the short-range and long-
range spatial dependencies, Zhang et al. use convolution-based
residual networks to simulate such dependencies among traffic
regions [8]. In order to make up for the lack of dynamics
analysis, Yao et al. propose a model for the spatial dynamics
and the fluctuations of periodical dependencies [9]. To achieve
better temporal analysis, Zhang et al. utilize a multi-scale self-
attention network and temporal hierarchy aggregation layer
to process temporal signals [10]. To jointly capture spatial-
temporal dependencies between domains, Li et al. propose a
light-weight transformer scheme [11].

Previous research have extensively explored the forecasting
of traffic inflow and outflow, with many studies dedicated

to this area. Among them, some studies pay attention to
the relationship within traffic flows. Zhang et al. explore the
mutual transitions among taxicab pick-ups and drop-offs and
propose mutual transition aware framework [12]. Zhao et al.
model three kinds of relationship in traffic flow respectively
and integrated them at the final prediction block to obtain the
prediction flow volume [13]. In our proposed STHGCN, the
inter-relationships and intra-relationships at traffic flows are
modeled with a stackable multi-layer structure. The proposed
model conducts the traffic feature diversion and fusion in each
layer, enhancing the capture of the dynamic and time-sensitive
entanglement relationship.

In addition, recent studies seldom consider the traffic condi-
tions of the area outside the grid division regions, which can be
considered as a special exterior region. With a broader scope
of consideration, STHGCN improves prediction accuracy by
analyzing trajectories between the grid division regions and
the exterior region.

III. PRELIMINARY

A. Definition 1 (Spatial Region)

A traffic predication area can be partitioned into an I × J
grid map based on the longitude and latitude where each
grid denotes a spatial region and all grids are disjoint. The
grid region at ith row and jth column can be denoted as
gi,j . Regarding each grid as a node, the grid map can be
transformed into a graph G = (V,A), where V is the set of
nodes, each of which corresponds to a unique grid or region,
|V | = N = I × J . A ∈ RN×N corresponds to the importance
of one node to another.

B. Definition 2 (Traffic Inflow and Outflow)

Traffic inflow and outflow can be described as the movement
of vehicles or people into and out of a specific area, such
as a road segment, an intersection, or a given traffic region.
Practically regional traffic inflows and outflows are often
calculated from trajectories. Similar to [14], we represent the
flow data as spatial data in time series, including the source
s = (τs, xs, ys) and the destination d = (τd, xd, yd), where τ
is timestamp and (x, y) is a geospatial point. Let P denotes
a set of traffic flow transfers consisting of (start, end) pairs.
For a grid node gi,j ∈ G, its inflow and outflow during the
interval t are respectively defined as:

Xin,i,j
t = |{((s, d) ∈ P : (xd, yd) ∈ gi,j ∧ τd ∈ t)}|, (1)

Xout,i,j
t = |{((s, d) ∈ P : (xs, ys) ∈ gi,j ∧ τs ∈ t)}|. (2)

C. Definition 3 (Graph Convolution)

The graph convolution operation we used can be defined as
Θ⋆G , a multi-step diffusion graph convolution operation based
on two adjacency matrices, which can be formulated as:

Θ ⋆G (F,A1, A2) =

K−1∑
k=0

(θk,1(A1)
k + θk,2(A2)

k)F . (3)

where F is the input data and A1,A2 are input adjacency
matrices. θk,1 and θk,2 are the weight matrices which are
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not shared between graph convolutions. K represents the
maximum diffusion step.

Hereafter, to facilitate the understanding of notations used in
this paper, in and out appearing in the superscript of a notation
indicate inflow and outflow respectively. The superscript
inter, intra imply the inter-relationship and intra-relationship
notions, and e indicates exterior region related notions.

In our model, traffic inflow and outflow are symmetrically
processed. For brevity, in the formulas that have symmetry
processing, we use superscript α to represent one flow and
β to represent the other flow. For example, when α stands
for inflow, then β is outflow and vice versa.

D. Problem Definition

For the flow prediction area, given spatial region graph G
and the traffic flow observations of all the grids in historical
consecutive T time intervals [Xt−T , . . . , Xt−1], the traffic
forecasting problem is to predict the future traffic flows of
the grid area Xt ∈ R2×I×J in the next time interval.

IV. METHODOLOGY

The overall framework of our proposed STHGCN is shown
in Fig. 2. Historical traffic flow data and time period informa-
tion are put into the time period fusion block for time periodic
information integration. There are stackable Traffic Flow Sep-
aration and Interaction Graph Convolution Modules. A single
TSIM implements one Exterior Region Feature estimation
Module , two Inflow/Outflow Feature Extraction Modules and
a Flow Feature Fusion Inergrator. The information from multi-
layer TSIMs is passed to the prediction block, which in turn
integrates the skip connection features of all layers to generate
the prediction.

A. Time Period Fusion Block

We focus on the time position information, which refers to
the temporal alignment or timestamps associated with traffic
data. The time period fusion block integrates the input regional
traffic flow data and the time period information. All graph
nodes in each time slice share the same time period informa-
tion. In the form of one-hot code, the time period information
encoding is comprised of two temporal hierarchies, which can
be denoted as Ed ∈ RT×7 and Es ∈ RT×sn (7 is the number
of days in a week and sn represents the number of time slices
in a day, e.g. sn =288 if the time slice is 5 minutes).

In the time period fusion block, the embeded data M in,
Mout ∈ RT×N×C can be obtained by the raw traffic flow
data X = {Xn−T , · · · , Xn−1} and time period information
{Ed, Es}. T is the length of the time slices and C is the
dimension of hidden features.

Mα = Conv(Xα)||R(Conv(Ed))||R(Conv(Es)). (4)

where Conv represents the convolution operation 1. R rep-
resents the dimension replication operation and || is the

1The parameters of Conv appearing in this paper are not shared with each
other. For brevity, we tend not to state the specific parameters every time a
convolution operation occurs.

concatenation operation. Mα are used as the input of the first
TSIM later.

B. Exterior Region Feature Estimation Module (ERFM)

The area outside the grid division regions is regarded as
a special exterior region. Since there commonly exists traffic
flow transfers between grid regions and the exterior region,
the traffic feature estimation and analysis of the exterior
region deserve attention. The exterior region feature estimation
module estimates the auxiliary features of inflow and outflow
in the special exterior region, i.e. the inflow auxiliary feature
U in ∈ RT×1×C and the outflow auxiliary feature Uout ∈
RT×1×C , as in Fig. 3. These two features are estimated from
the input data Din, Dout ∈ RT×N×C of TSIM. The input
of the first TSIM are the output of the above-mentioned time
period fusion block, i.e. M in and Mout, and the input of the
other TSIMs are the output of the previous TSIM.

Uα = Conv(M(Conv(Dβ), Conv(Dα))), (5)

where M is a replaceable merge operation in different sce-
narios and we use subtraction operation in this paper.

Take traffic inflow as an example. Two special adaptive
adjacency matrices Ain

e , Aout
e ∈ R1×N are introduced to

facilitate the simulation of traffic flow interaction between the
exterior region and the grid division regions. Ain

e quantifies
the influence of the external auxiliary inflow feature U in,
which originates from the exterior region on each grid division
region. The influence of external auxiliary flow feature Rin,
Rout ∈ RT×N×C on N regions can be formulated as follows:

Rα = Wα
e A

α
eU

α. (6)

where Wα
e is a weight matrix.

C. Inflow/Outflow Feature Extraction Module (FEM)

Inflow/Outflow feature extraction module handles the fea-
ture derivation and process in inflows or outflows for the
inter-relationship and intra-information in regional traffic in-
flow/outflows.

Taking traffic inflow as an example, its inter-relationship
with outflow and its intra-relationship with the other inflow
in other regions can be separated out, as shown in Fig. 4.
An interactive feature adjacency matrix Ain

inter ∈ RN×N

from inflow to outflow, along with a fixed static geographic
adjacency matrix Ag ∈ RN×N , are used to discover the
hidden interaction entanglement information in traffic flows.
An inflow inner feature adjacency matrix Ain

intra ∈ RN×N and
Ag are used to achieve the mining of inner features in traffic
inflow. For the three matrices mentioned above, Ag is a matrix
constructed according to the geographic adjacency relationship
of traffic regions in the real data set. Ain

inter and Ain
intra are two

adaptive adjacency matrices whose structures are consistent
with the self-adaptive adjacency matrix proposed by [15].
For example, Ain

inter is derived from two node embedding
dictionaries Ein,1

inter ∈ RN×c′ and Ein,2
inter ∈ Rc′×N with

learnable parameters, which can be be expressed as:

Aα
inter = SoftMax(ReLU(Eα,1

interE
α,2
inter)), (7)
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Fig. 2. Overall architecture of Spatial-Temporal Flow Holistic Interaction Graph Convolution Network (STHGCN).

Fig. 3. The architecture of Exterior Region Feature Estimation Module.

where SoftMax represents the softmax function and ReLU
represents the relu activation function.

The data Din, Dout ∈ RT×N×C passed into TSIM are
processed by an Inflow/Outflow Feature Extraction Module
(FEM). The inter-information Hα

inter ∈ RT×N×C of traffic
flow and the intra-information Hα

intra ∈ RT×N×C that starts
from one of the flows and affects the other flow in grid division
regions can be formulated as:

Hα
inter = Θ ⋆G (Dα, Ag, A

α
inter), (8)

Hα
intra = Θ ⋆G (Dα, Ag, A

α
intra), (9)

In summary, the processing of the TSIM input data Din and
Dout by FEM can be expressed as follows:

Hin
intra, H

in
inter, H

out
intra, H

out
inter = FEM(Din, Dout), (10)

where FEM represents a directional flow feature extraction
module.

In order to more accurately simulate delay and diffusion of
the traffic data, we also apply diffusion operations to external
auxiliary information of the exterior region, which enables

Fig. 4. The architecture of the Inflow/Outflow Feature Extraction Module
(FEM). Here we present the inflow analysis as an example.

the capture of multi-step influences. As shown in Fig. 2,
the output of the exterior region feature estimation module
(ERFM) acts as the input of FEM. For external auxiliary inflow
feature in exterior region, it generates the inter-information
Hin

inter ∈ RT×N×C from inflow to outflow and the inflow
intra-information Hin

intra ∈ RT×N×C . In the same way, the
external auxiliary outflow features in exterior region generates
the inter-information Hout

inter ∈ RT×N×C from outflow to
inflow and the outflow intra-information Hout

intra ∈ RT×N×C .
Such operations can be formulated as follows:

Hin
intra,Hin

inter,Hout
intra,Hout

inter = FEM(Rin, Rout). (11)

D. Traffic Flow Feature Fusion Integrator

The feature fusion integrator is proposed to simulate the
interweaving and complex characteristics of traffic flow and
facilitate the subsequent stackable structure. A fusion method
is introduced to integrate the four parts of information ex-
tracted from the traffic flows. The new traffic flow information
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Nα ∈ RT×N×C can be derived by Hβ
inter, Hα

intra, Hβ
inter and

Hα
intra, which can be formulated as:

Nα = Wα
1 ⊙Hβ

inter +Wα
2 ⊙Hα

intra

+Wα
3 ⊙Hβ

inter +Wα
4 ⊙Hα

intra,
(12)

where Wα
1 ,W

α
2 ,W

α
3 ,W

α
4 are the weight matrices for traffic

flow information fusion.

E. Traffic Flow Separation and Interaction Graph Convolution
Module (TSIM)

A single TSIM implements an ERFM and two FEMs. The
two FEMs fulfill distinct roles. One is to handle the intricate
flow features of grid division regions, the other is to deal with
the auxiliary flow features of the exterior region. To have better
performance, a TSIM also has two structures besides the above
components.

TCN: To address the trend characteristics between con-
secutive time slices of traffic flow, we incorporate Temporal
Convolutional Networks (TCN) to handle them. Taking inflow
as an example, assume the dilation rate is dr, then we can get
the processed data P in, P out ∈ R(T−dr)×N×C through TCN,
which can be expressed as follows:

Pα = tanh(W t
i,1 ⋆Nα)⊙ σ(W t

i,2 ⋆Nα), (13)

where ⋆ is the dilated convolution operation, σ is the sigmoid
function and tanh is the tanh function. W t

i,1, W t
i,2, W t

o,1 and
W t

o,2 are weight matrices.
Skip Connections: To mitigate overfitting and enable more

efficient learning in deep neural networks, residual connections
are utilized. In a single TSIM, the input data Din and Dout

of TSIM and the data P in and P out processed by TCN are
connected to form the residual data as the input of the next
TSIM, which can be formulated as:

Dα
l+1 = BN(Dα

l +Φ(Pα
l )), (14)

where Φ represents the truncation operation to align dimen-
sion, BN represents the batch normalization, Din

l is the input
of the lth TSIM, and Din

l+1 denotes the input of the next TSIM.
Furthermore, we establish skip connections between TSIMs.

The output Sin, Sout ∈ R(T−dr)×N×C′
of a single TSIM

are obtained by the combination of P in and P out through
concatenation as follows:

Sα = Concat(Conv(Pα), Conv(P β)). (15)

where Concat represents the concatenation operation.

F. Prediction Block

To achieve the traffic flow forecasting of the next time slice,
we design the prediction block. The input of the prediction
block is the integration results of data S in each TSIM. Con-
volution and ReLU activation function are used for dimension
processing and feature extracting to obtain the target result Xt.

Xα
t = Conv(ReLU(Conv(ReLU(

∑ L

l=1
Sα
l ))). (16)

where L represents the number of TSIMs. Sα
l denotes the Sα

in the lth TSIM.

V. EXPERIMENTS

A. Experiment Setting

Dataset. Our experiments are conducted on four real-world
traffic dataset: NYC-Taxi, NYC-Bike [9], CHI-Taxi and DC-
Taxi [16]. The grid size of the datasets is 1km × 1km. For
NYC datasets, we spilt the final 20 days for testing, the 8 days
before for validation, and the rest (32 days) for training. For
DC and CHI datasets, we spilt the final 2 months for testing,
the 2 months before for validation, and the rest (8 months) for
training.

Preprocessing and Evaluation Metric. Standardization is
adopted at the data processing stage. The loss function of our
model is MAE. RMSE and MAPE are used to evaluate the
performance of the model. A threshold θ is set to filter out
samples when testing the model 2. Based on the distribution
of the datasets, we set θ to 10 for the NYC datasets and to 2
for the other datasets.

Implementation. Our proposed model is implemented with
PyTorch. The batch size is set to 16. The number of the input
time slices T is set to 4 and the number of the TSIMs is
set to 2. Our codes are available at https://github.com/hard-
workingYang/STHGCN.

B. Baselines

We select representative baselines for experimental com-
parison: HA, ARIMA [18], ST-Resnet [8], DMVST-Net [17],
Graph-WaveNet [15], STDN [9], DSAN [19], STGODE [20],
DMSTGCN [21]. ST-SSL [22], ST-TIS [11]. These baselines
includes traditional methods and comparable deep learning
methods, which achieve outstanding even state-of-the-art per-
formance.

C. Prediction Accuracy

The result of the experiment on NYC datasets is shown in
table I. In the experiment, STHGCN achieves the best results
compared with all baseline models, which shows that our
model has a good performance on real traffic flow prediction
scenarios. The result of the experiment on CHI and DC
datasets is shown in table II. Our model also performs better on
these two datasets from different geographical sources com-
pared with four representative methods. The result indicates
that our model has relatively good versatility that can play a
role in both few-shot datasets and dense datasets from different
urban areas.

Compared with the traditional naive prediction models like
HA and ARIMA, STHGCN captures spatial features in traffic
data, and thus has a better performance. Compared with ST-
ResNet, DMVST-Net and STDN, our STHGCN uses adaptive
adjacency matrices for graph diffusion convolution, which
provides more flexibility in capturing potential connections
between global regions. Compared with the graph convolution
based models Graph Wavenet and DMSTGCN, STHGCN

2As in the methods adopted by Yao et al. [17] [9], the threshold setting
is common in both industry and academia because low traffic volume are of
little interest in real-world applications.
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TABLE I
THE TRAFFIC FORECASTING PERFORMANCE COMPARISON OF STHGCN AND BASELINES ON TWO NYC TRAFFIC DATASETS.

Datasets NYC-Taxi NYC-Bike
Metrics RMSE MAPE (%) RMSE MAPE (%)
Methods In Out In Out In Out In Out

HA 33.83 43.82 21.14 23.18 11.93 12.49 27.06 27.82
ARIMA 27.25 36.53 20.91 22.21 11.25 11.53 25.79 26.35

ST-ResNet 22.23±0.30 27.23±0.25 21.40±0.99 21.79±0.47 8.18±0.26 8.30±0.32 25.88±1.22 26.32±1.41
Graph-WaveNet 20.47±0.12 25.83±0.13 16.58±0.07 16.34±0.08 8.19±0.05 9.20±0.05 21.93±0.15 22.66±0.15

STDN* 19.05±0.31 24.10±0.25 16.25±0.26 16.30±0.23 8.15±0.15 8.85±0.11 20.87±0.39 21.84±0.36
STGODE 23.10±0.02 26.56±0.04 17.90±0.08 17.84±0.01 8.36±0.03 9.28±0.03 22.21±0.17 23.48±0.06

DMSTGCN 18.79±0.14 24.39±0.16 15.73±0.24 15.40±0.34 8.32±0.12 8.89±0.09 22.21±0.22 22.75±0.38
ST-SSL 21.78±1.12 25.21±0.33 15.26±0.26 15.39±0.26 8.76±0.08 9.65±0.26 21.27±0.39 21.80±0.35
ST-TIS* 17.73±0.23 21.96±0.13 14.65±0.32 14.83±0.76 7.57±0.04 7.73±0.10 18.64±0.23 18.58±0.19

STHGCN 16.94±0.09 21.88±0.08 13.30±0.02 13.19±0.03 6.82±0.05 7.39±0.03 17.50±0.14 17.92±0.09
The results highlighted in bold are the best results in the experiment while the underlined results indicate the second best results.
The results of models marked with an asterisk (*) are cited from previous papers conducted under the same experimental conditions [9] [11].

TABLE II
PERFORMANCE COMPARISON OF STHGCN AND BASELINES ON CHI AND DC TAXI DATASETS..

Datasets CHI-Taxi DC-Taxi
Metrics RMSE MAPE (%) RMSE MAPE (%)
Methods In Out In Out In Out In Out

ST-ResNet 18.75 22.00 41.24 43.96 23.55 34.90 39.92 44.32
Graph-WaveNet 12.98 15.41 30.21 31.51 6.51 9.02 28.03 29.81

STGODE 15.10 15.60 42.19 42.78 8.85 10.15 38.55 35.26
DMSTGCN 12.26 15.14 29.72 30.88 6.27 8.64 33.68 32.83
STHGCN 11.19 13.88 27.42 28.06 5.79 7.98 26.90 27.91

takes into account the issue of time periodicity and the impact
of exterior region traffic flow so that it can be aware of the
specific location of the input time slice and achieve better
prediction effect.

Compared with the advanced ordinary differential equation
based models like STGODE, self-supervised models like ST-
SSL and transformer based models like ST-TIS, STHGCN has
better traffic flow forecasting performance and outperforms
them. Collectively, STHGCN does not isolate traffic inflow
and outflow and considers the inter-relationship and intra-
relationship in traffic flows. In addition, STHGCN uses the
prediction auxiliary information based on the traffic flow of
the exterior region, broadening its scope of consideration and
enhancing performance.

D. Ablation Study

Ablation study is conducted to analyze the effects of the
components of STHGCN. We design three STHGCN variants
as follows:

• w/o-time-period: removes the time period fusion block.
• w/o-inout: removes the Inflow/Outflow Feature Extrac-

tion Modules (FEM) in STHGCN.
• w/o-special-region: removes the Exterior Region Feature

Estimation Modules (ERFM) in STHGCN.
The ablation study is tested on NYCTaxi and NYCBike
datasets and the result is shown in Fig. 5. It shows that each
module of our model is indispensable and can effectively

improve the traffic forecasting effect. In w/o-time-period, due

Fig. 5. The results of ablation study.

to the lack of time period fusion block, the temporal periodical
sensitivity of the model weakens, which leads to the decline in
the accuracy of traffic flow prediction. In w/o-inout, without
the modeling of inter-relationship and intra-relationship in
traffic flow, the adaptability of the model to complex traffic
data decreases a lot. In w/o-special-region, lacking the supple-
mentary features from the special exterior region, the model
ignores some traffic flow volume fluctuation caused by cross-
regional traffic transfers, and thus its performance is worse
than that of STHGCN.

E. Time and Memory Efficiency Comparison
We select five representative baselines to conduct additional

experiment together with STHGCN for time and memory
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efficiency comparison on NYC-Taxi dataset. The result of
the experiment is shown in Table III. The inference time in
the table is measured on the test set with the batch size set
to 16. Compared with the lightweight optimized transformer
based like model ST-TIS, STHGCN need less inference time
and less GPU space while training. In comparison with the
models that are also based on graph convolution like Graph-
Wavenet and DMSTGCN, the inference time of STHGCN is
at an intermediate level due to the additional modeling of
inter-relationship and intra-relationship in traffic flows and
the estimation part of exterior region flow. And STHGCN
occupies less GPU space compared to the two models, thanks
to the reduction of stackable layers without compromising the
prediction performance. As opposed to the self-supervised and
ODE models, STHGCN improves the prediction effect with
less inference time and less GPU space occupied. To sum up,
STHGCN attains superior predictive performance on the grid
traffic dataset by taking less space and time resources.

TABLE III
TIME-MEMORY EFFICIENCY EXPERIMENT ON NYC-TAXI DATASET.

Method Traning
time (s)

Inference
time (s)

Memory
(MB)

Inflow
RMSE

Outflow
RMSE

Graph-WaveNet 3.89 0.9 2133 20.47 24.81
STGODE 5.87 1.42 1929 23.10 26.56

DMSTGCN 6.48 1.41 2795 18.79 24.39
ST-SSL 8.34 2.59 3347 21.78 25.21
ST-TIS 20.86 5.16 6815 17.73 21.96

STHGCN 5.2 1.17 1833 16.94 21.88

VI. CONCLUSION

In this work, we propose a novel Spatial-Temporal Flow
Holistic Interaction Graph Convolution Network model for
traffic flow prediction. It utilizes a time period fusion method
for time periodic capture. It takes into consideration the influ-
ence of the exterior region and utilizes an ERFM to estimate
its impact on the grid division regions as auxiliary information.
It uses TSIMs to model intricate traffic flow information from
the perspective of graph convolution. And STHGCN employs a
traffic flow feature fusion integrator to accurately simulate the
interweaving relationships among regional traffic flows. With
layer-by-layer separation and fusion of inflow and outflow
information, STHGCN achieves better traffic flow prediction
performance. Experimental results on four real-world datasets
show that STHGCN outperforms the compared baselines. In
the future, we plan to investigate the distinct and dynamic
contributions of two types of traffic flow and two kinds of
traffic regions to the final prediction for further accuracy
enhancement.
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