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Abstract. Spatial-temporal modeling considering the particularity of
traffic data is a crucial part of traffic forecasting. Many methods take
efforts into relatively independent time series modeling and spatial min-
ing and then stack designed space-time blocks. However, the intricate
deep structures of these models lead to an inevitable increment in the
training cost and the interpretability difficulty. Moreover, most previous
methods generally ignore the meaningful time prior and the spatial cor-
relation across time. To address these, we propose a novel Time Adjoint
Graph Neural Network (TAGnn) for traffic forecasting to model entan-
gled spatial-temporal dependencies in a concise structure. Specifically,
we inject time identification (i.e., the time slice of the day, the day of the
week) which locates the evolution stage of traffic flow into node repre-
sentation. Secondly, based on traffic propagation, we connect data across
time slices to generate the time-adjoint hidden feature and spatial corre-
lation matrix, allowing the spatial-temporal semantics to be captured by
a simple graph convolution layer. And we introduce a time residual con-
nection in generating predictions to capture the future traffic evolution.
Experiments on four traffic flow datasets demonstrate that our method
outperforms the state-of-the-art baselines efficiently.

Keywords: Spatial-temporal mining + Graph neural network - Traffic
forecasting

1 Introduction

Real-time and dynamic traffic forecasting is vital in the growing demand for
intelligent transportation services. Accurate traffic prediction greatly impacts
on urban spatial-temporal situation awareness for city management and travel
planning. As a widely concerned spatial-temporal data forecasting problem in
both academia and industry, traffic prediction has its uniqueness due to the
following temporal and spatial observations:

(1) The time-prior information helps to locate the evolution of traf-
fic dynamics in periodic changes. Traffic flow naturally has its unique tem-
poral characteristics. Flow series recorded in road sensors always show similar
periodic changes on daily and weekly scales. Intuitively, given a road section
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with its historical traffic values and the time to predict (e.g. the peak hour on
a weekday), a basic inference can be carried out easily. The time-prior informa-
tion implies the innate traffic representation based on long-term observations. It
could be beneficial in the traffic prediction tasks to directly use this intact and
readily available time information (e.g. the time slice of the day, the day of the
week) without much additional acquisition cost. Besides, based on the general
temporal cycle pattern, modeling the change amount of traffic flow instead of
the original value in a short future evolution may be easier for forecasting.

(2) The influence range of spatial dependence (i.e. local to global)
between road sensors varies according to the time span of traffic flow
propagation. As traffic state is transmitted along the road structure with time,
traffic information of one location directly affects its spatially nearby neighbors
in a short-term period (e.g. 5 min). However, when a traffic state (e.g. congestion)
lasts a relatively long time, the scope of affected spatial locations will become
wider. This means that the traffic status of one location can potentially influence
that of distant locations over time as well as reflect the influence of historical
states of locations far away from it. The closer two traffic locations are, the
more often the spatial influence between them occurs within a short period.
Conversely, spatial influence at more distant locations tends to persist over time
due to traffic propagation [14]. How to extract global spatial connections related
to time spans is nontrivial.

In recent years, deep learning-based models have been continuously proposed
for capturing the temporal and spatial correlations in spatial-temporal series
data. Many researchers utilize widely-used time-related models (e.g. Recurrent
Neural Networks, Temporal Convolution Networks, and Transformer-liked mod-
els) to capture time dependencies. However, the physical time label describing
the evolution stage of traffic flow series is usually neglected in these methods.
Studies based on spatial mining made progress by considering varied adjacency
relationships in short-term time slices but they generally ignore direct spatial
influences that exist on different time spans. It is still a challenge to appropriately
capture the entangled spatial and temporal dependencies in different space-time
scales. Besides, the separate capture of temporal and spatial features hinders the
exploration the space-time interaction in traffic propagation.

To address these issues, a Time Adjoint Graph neural network (TAGnn)
for traffic forecasting is proposed in this work. The proposed model TAGnn can
explicitly use the time-prior to increase the accuracy and reliability of prediction
and dynamically mine the spatial-temporal dependencies from different space-
time scales. The main contributions of this work are as follows:

(1) A new time encoding method is designed to make explicit use of time-
prior information in the node representation, which provides considerable
gains in accuracy. Besides, the time-residual connection is introduced in the
generation of predicted values to capture the evolution of traffic flow.

(2) The spatial-temporal characteristics in each time slice are captured through
novel yet simple spatial-temporal mining modules, which connect elements
of input series from different time spans to extract spatial dependencies
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across time. It is conducive to exploring spatial-temporal interaction on
appropriate space-time scales.

(3) Extensive experiments on four public real-world traffic datasets show that
the proposed method outperforms state-of-the-art baselines with less train-
ing time cost.

2 Related Work

Time analysis and spatial mining are two key parts of the traffic forecasting prob-
lem. Early methods [8,15] are computationally efficient but perform poorly in
complex scenarios. RNN-based, CNN-based and Transformer-based [10] models
[2,5,6,11,12] can extract short-term and long-term temporal correlations in time
series. Some other methods [4,9,14] capture cross-time dependencies. However,
these models devoted to time dependence extraction usually rely only on the
implied time characteristics or location coding of input data itself, and rarely
take into account the auxiliary gain of time prior information. As advanced
research on spatial mining, an increasing number of methods are focusing on
the non-local and dynamic spatial influence between road nodes [2,11,13]. How-
ever, it is still challenging to explore the global spatial-temporal interaction in
an appropriate space and time scale. Two recent studies [7,14] have turned the
spotlight on mining data connections across different time horizons. They put
forward some new ideas about modeling spatial-temporal interactions with differ-
ent mechanisms, but there may be redundancy in the construction of adjacency
matrices and input representations.

3 Preliminary

A group of road sensors distributed in a road network can be formulated as a
graph G = (V,€). V is a set of nodes meaning the road sensors, |V| = N. &
is a set of edges. In the urban road network, the 24-h traffic data collected by
sensors are generally aggregated at a certain frequency (e.g., once every 5 min),
so that a day can be divided into multiple time slices (e.g., 288). The traffic
data collected by one sensor v; € V is a time sequence composed of multiple
discrete values {@u,;t,, oty |0z, € RYY, and C is the number of features.
At a certain time slice t;, traffic features of all N graph nodes form the feature
matrix X;, € RVXC The traffic forecasting problem on a road network G can
be formulated as: Given historical observation X = [X;_,,..., X;—1, X;] in the
past P time slices (here p = P —1 for brevity), we aim to predict the traffic data
Y = [Xit+1,-, Xiy2, Xi+@)] in the next consecutive @ time slices. Here, time
slice t denotes the most recent slice in the input series.

4 Methodology

The core idea of the proposed model TAGnn is to inject the time-prior informa-
tion into node representation and connect data in different time spans to produce
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the time-adjoint hidden feature and the across-time global spatial correlation.
Then the spatial-temporal feature can be captured by a simple graph convolu-
tion layer in each time slice. And a time-residual connection is introduced to
generate predicted values for capturing the future evolution of traffic flow.

T",ne Inp .Ut Spatial-Temporal Mining Dic.o.dﬁf Unit OUtp ut
prior  series - series
| = o A
2 rcrc 35 O s %
i
o} fos module RI*2 Y
) @ 3 == el )
T e
= BE BC o FC|[FC|
11287) R 5 ule Ve N ;
& - < B module -+ 7
I t+j
: \ Fei) > ~
TFCIC S El
n S module rclircl %
i1l el
#3 T
\ At ) t+
SV \eoreessmmm | | | oemrmemmeem e e
3

/ The time slice e

3 “ of the day /// "/\\\‘ A‘
3 The day of X

! n the week > . - e

Fig. 1. The overall framework of the proposed TAGnn model.

The overall framework of the proposed TAGnn model is illustrated in Fig. 1.
The input series X = [X;—p, .o, Xyoiy oo, Xy € RPXNXC g reconstructed by
data concatenation and combined with the corresponding time prior information
Titice € RPXC1 (the time slice of the day, C; is the maximum number of time
slices in one day, e.g. C; = 288 when each time slice is 5min) and Ty, € RP*7
(the day of the week) in the Time Encoding Module, they are respectively trans-
formed to hidden features and then aggregated. Then the time-adjoint hidden
features Z = [Zy—py .o, Zi—iy ey Zy) € RE¥NXA (d is the number of the hidden
dimension) is generated through a convolution layer by time dimension. After
that, each time slice owns a Spatial-Temporal Mining (STM) Module. It uses
the input feature X;_; in time slice t — ¢ and X; in the most recent time slice ¢
(X¢ only when ¢ = 0) to learn the spatial adjacency matrix A,_; and then fed
A;_; and the time-adjoint hidden feature Z;_; into the Graph Convolution (GC)
module. Outputs of P STM modules are then merged and input to @ decoder
units to generate the final prediction in the Decoder Module.

4.1 Time Encoding Module

The unique time properties shown in the periodic changes of traffic flow distin-
guish the traffic forecasting problem from other time series prediction problems.
The adjoint temporal information (e.g. the time slice of the day, the day of the
week) helps to locate the evolution stage of traffic flow in an intuitive way and
readily available. Thus, we input two tensors Tj;ce, Tdqy indicating the temporal
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tags along with the traffic data into the deep model. All graph nodes in each
time slice share the same temporal information, it can be normalized in the day
and week scale. For instance, 00:05 am to 00:10 am on Thursday is the second
time slice (5min per slice) of the fourth day in the week. These two order num-
bers are encoded to vectors belonging to Rt and R” by one-hot coding. For the
whole input sequence, the adjoint time data are constructed as Ty € RF*1
and Tyq, € RPX7. Both time labels are transformed into hidden tensors through
individual fully-connected layers respectively:

Hgjice = ReLU(FCslice(Tslice)) = ReLU(Tslicewl + bl) c RPXd (1)

Haay = ReLU(Tiyqy Wy + by) € RP*4 (2)

where F'C is the fully-connected layer, ReLU is the activation function, Wy €
RO >4 Wy € R™? and by,by € R? are the weights and biases of linear projec-
tions. Hgjice, Haay are temporal embedding tensors.

For exploring the across-time influence of traffic propagation, we concatenate
the items in each time slice t—4,7 € {0, 1, ..., p} and the latest time slice ¢ in input
traffic data X to obtain the across-time data feature Xgp,qn € RPXNX2C Then
this reconstructed data feature is transformed into a close dimension through
two fully-connected layers:

(stnm)i = (Xt—iHXt) € RN >2¢ (3)

H1ow = FCypan(ReLU (X gpan W3 + b3)) € RPN )

where || is the concatenation, W3 € R2¢*4 b3 € RY are the parameters of linear
projection, and Hyjq,, is the transformed traffic feature with across-time repre-
sentation. This traffic feature and time embedding tensors are added through a
broadcasting mechanism since every traffic node shares the same time prior:

HST = Hslice + Hday + Hflow € RPXNXd (5)

here, Hgj;ce and Hgqy are replicated along with the node dimension and then
added with Hyo,. And Hgr is the deep representation with time-prior of all
nodes. To better describe the local temporal pattern of traffic nodes, a convo-
lution layer along with the time dimension is then carried out to obtain the
time-adjoint hidden feature Z with local time trends:

Z =0, xHgr +a c RPXN*d (6)

where * denotes the convolution operation, ©@; means the 1 x k temporal kernel,
k is the kernel size, and ¢ means the bias. To maintain the original time length,
we use the replication padding in the time dimension to operate equal-width
convolution, which means the first and the last items in Hgy are replicated for
the supplement to reach the target length. Here, Z can be regarded as a matrix
sequence [Zy—p, ...Zt—i, ..., Zt], each item is one of the inputs to the following unit
in each time slice.
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4.2 Spatial Temporal Mining Modules

The spatial correlations among traffic nodes are time-varying. For a relatively
long term, the spatial scope of the impact will become bigger. This motivates us
to construct across-time combinations in input series for extracting the spatial-
temporal impacts on future traffic evolution. We formulate the influence degree
in each time slice as an adjacency matrix, which can be integrated with the
time-hidden feature (described in Sect.4.1) through a graph convolution layer.

Specifically, the raw input data X;_; from each past time slice ¢ — is connected
with the most recent feature X; and this combination is then flattened. Here fea-
tures of every node are investigated individually through the flatten operation and
their interaction can be mined by simple fully-connected layers. Thus two F'C lay-
ers transform the flattened result into an adjacency matrix A;_;:

B = FC}(flatten(X,;_;||X3)), Z e{l,...,p} c R )
FCl(flatten(Xy)), i=0
Al = tanh(FC2(E,_;)) € RN (8)

where E;_; € R! is a hidden embedding with size I, and tanh is the activation
function. A;_, is then reshaped into the learned adjacency matrix A,_; e RNXN
followed by a dropout layer with the rate ¢. Each entry in A,_; can be regarded
as the spatial impact degree of a node in past time slice ¢ — i on the other node
in the most recent time slice t.

After that, adjacency matrix A,_; is fed into the Graph Convolution (GC)
module along with the time-adjoint hidden feature Z;_; in the corresponding
time slice. In this work, a GC module consists of a spatial-domain graph convo-
lution layer with the GLU activation and a residual connection from input:

GCO(X,A) = (AX01 + p1) ©0(AXO2 + 2) + X (9)

where X € RV*? is the interested feature, A € RV*¥ is the adjacency matrix,
® denotes element-wise product, ¢ means the sigmoid function, and 61,6y €
R4 3, 3, € R? are the parameters of projections. The spatial-temporal feature
in each time slice t — i is extracted through individual GC module:

Hi i = GCi(Zs_i, Ar_y) € RV* (10)

Finally, the outputs of STM modules in all P time slices are merged on feature
dimension into H, € RV*P4,

4.3 Decoder Module

The Decoder Module converts the spatial-temporal features from different space-
time scales into the final expected targets. To directly model the future evolution
of traffic, we sum the input data X; on the latest time slice ¢ with the hidden
features processed by two fully connected layers:

Xipj = FCHReLU(FC3(H,))) + X, € RV*C (11)
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The setting of the time residual connection of X; means the model aims to
extract future changes based on the latest spatial-temporal situation.

Finally, the expected prediction can be obtained by concatenating the out-
puts of all Q) target time slices:

Y= [Xt+1aXt+2, ...,Xt+Q] € REXNXC (12)

where Y is the final predicted sequence.

5 Experiments

5.1 Datasets and Experiment Settings

To evaluate our model, we conduct experiments on four public datasets [2]:
PEMS03, PEMS04, PEMS07, PEMS08. All datasets record highway traffic flow
in four districts in California. The raw flow data are aggregated every 5 min, thus
(1 is 288. Counsistent with previous studies [2,9], all data sets are divided into
training, validation, and test sets in a ratio of 6:2:2. The implementation of the
proposed model is under the PyTorch framework!' on a Linux server with one
Intel(R) Xeon(R) Gold 5220 CPU @ 2.20 GHz and one NVIDIA Tesla V100-
SXM2 GPU card. We use one-hour historical data to predict the next hour’s
data for all datasets, which means length P and @ are both 12. The number of
feature C' is 1 for all datasets. We choose Mean Absolute Error (MAE) as the
loss function and use Adam as the optimizer. The batch size is 32, the learning
rate is 0.001, and the number of training epochs is 100. We use MAE, Mean
Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE) [1]
to evaluate the prediction performance. The average results of 12 time slices are
presented. We compare TAGnn with 10 classical and up-to-date methods: VAR
[15], SVR [8], LSTM [3], DCRNN|5], STGCN [12], STFGNN [4], DSTAGCN
[14], FCGAGA [7], Graph Wavenet (GWN) [11], and ASTGNN [2].

5.2 Experiment Results

The performance comparison of TAGnn and baseline methods is shown in
Table 1, the best results are shown in bold. The proposed model TAGnn
achieves better performance than baseline methods for most of cases. As Table 1
shown, compared with the most competitive method ASTGNN, our TAGnn
achieves 9.28%, 5.92%, 6.69% improvements in terms of MAE, MAPE, RMSE
on PEMS08. Likewise, TAGnn has the best performance of all three metrics on
PEMS04 and PEMS07, the improvements are 2.25%, 2.19%, 2.55% and 3.24%,
5.16%, 2.86%, respectively. And TAGnn improves ASTGNN by 3.80% in terms
of MAE on PEMSO03. Instead of stacking many blocks, TAGnn uses a single and
independent graph convolution layer in each time slice and captures the spatial-
temporal interactive features in parallel through the recombination of input data.

! Our codes are available at https://github.com/zhuoshu/TAGnn.
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Table 1. Performance comparison on PEMS datasets.

Models | PEMSO03 PEMS04 PEMS07 PEMS08
MAE |MAPE | RMSE MAE |MAPE |RMSE MAE |MAPE RMSE|MAE |MAPE RMSE

(%) (%) (%) (%)
VAR 23.65 24.51 | 38.26 |23.75 |18.09 |36.66 |75.63 |32.22 |115.24 |23.46 1542 | 36.33
SVR 21.97 21.51 | 35.29 |28.70 |19.20 |44.56 |32.49 |14.26 |50.22 |23.25 |14.64 | 36.16
LSTM 21.33 23.33 | 3511 |27.14 |18.20 |41.59 |29.98 |13.20 |45.84 |22.20 |14.20 | 34.06

DCRNN 18.18 |18.91 | 30.31 |24.70 |17.12 |38.12 |25.30 |11.66 |38.58 |17.86 |11.45 |27.83
STGCN 17.49 |17.15 1 30.12 |22.70 |14.59 |35.55 |25.38 |11.08 |38.78 |18.02 |11.40 |27.83
STFGNN |16.77 |16.30 |28.34 19.83 |13.02 |31.88 |22.07 '9.21 35.80 |16.64 10.60 |26.22
DSTAGCN | 15.31 [14.91 |25.30 |19.48 |12.93 |30.98 |21.62 9.10 34.87 |15.83 10.03 |24.70
FCGAGA [1599 |17.44 [26.99 19.42 |15.12 |31.33 |21.73 ' 9.11 35.33 |15.80 10.73 |24.73
GWN 14.79 |14.32 |25.51 |19.36 ' 13.31 |31.72 |21.22 |9.07 34.12 |15.07 |9.51 23.85
ASTGNN |14.78 |14.79 |25.00 18.60 |12.36 |30.91 |20.62 | 8.86 34.00 |15.00 |9.50 24.70
TAGnn 14.22|14.76 | 25.04 |18.18 12.09 |30.12 |19.958.40 33.03 |13.61 8.94 23.05

It may help to avoid the difficulty of interpretation to some extent caused by
exceedingly increasing the depth of the model. The explicit use of time-prior
to node representation and the direct extraction of interactive spatial-temporal
dependencies in different time span enables TAGnn to achieve better forecasting
performance.

5.3 Ablation Studies and Efficiency Analysis

Our ablation studies are conducted to further validate the effectiveness of the
time encoding module, the time residual connection, and the across-time graph
convolution modules in the proposed TAGnn model. We design 3 variants: (a)
TAGnn w/o time prior: It removes the time prior information of the input
data. (b) TAGnn w/o across-time connection: It cancels the connection of
data in each past time slice and the most recent time slice. (c¢) TAGnn w/o
time residual connection: It removes the residual connection from the data
in the latest time slice.

From the ablation results in Table2, we can find: (1) Time prior provides
considerable gains in traffic prediction tasks and the explicit use of time aux-
iliary information is helpful for traffic modeling. (2) It’s beneficial to consider
across-time influence in global spatial mining which is more in line with the char-
acteristics of traffic propagation. (3) By using the time residual connection to
learn the future evolution of traffic flow, the framework of TAGnn well describes
the temporal evolution contexts and makes a better prediction.

To investigate the proposed model from the efficiency level, we compare
the time consumption and convergence curves of TAGnn with ASTGNN and
GraphWavenet due to their compelling performance on accuracy. Table 3 shows
the training time of each epoch and the total inference time for the whole test
data. Note that the training of ASTGNN has two stages (non-autoregressive
one and autoregressive one). Figure 2 illustrates the convergence curves, which
contain validation MAE in the training process of three models on one-hour
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prediction. The results demonstrate that TAGnn presents the lowest time con-
sumption among the three methods and quickly achieves lower validation errors
than both baseline methods.

Table 2. Performance comparison of the variants of TAGnn.

Models PEMS04 PEMS08
MAE | MAPE(%) | RMSE | MAE | MAPE(%) RMSE
GraphWavenet 19.36 | 13.31 31.72 |15.07 |9.51 23.85
ASTGNN 18.60 | 12.36 30.91 |15.00 |9.50 24.70
TAGnn w/o time prior 18.82 | 12.53 30.53 | 15.15 1 9.64 24.03
w/o across-time connection |18.42 |12.26 30.30 |13.81 |9.12 23.30
w/o time residual connection | 18.35 | 12.53 29.98 13.94 | 9.57 23.05
TAGnn 18.18 | 12.09 30.12 |13.61 | 8.94 23.05
Table 3. Time consumption on PEMS04 2 PEMS04
dataset. » — ASTGNN
w —— GraphWavenet
S =] —— TAGNN
Models PEMS04 <,
Training (s/epoch) | Inference (s) %
GraphWavenet 21.4 2.0 % z
ASTGNN (stage 1)|84.6 42.5 =2
ASTGNN (stage 2)|189.0 18
TAGnn 19.2 1.4 0 20 40 60 80 100 120 140
Number of epochs

Fig. 2. Model convergence curves on
PEMS04 dataset.

6 Conclusion

In this work, we propose a novel Time Adjoint Graph Neural Network (TAGnn)
for traffic forecasting. To extract the spatial-temporal interactive features orig-
inated from traffic propagation, TAGnn provided a new perspective to process
the time series which injects the time prior information into deep representa-
tion and connects data of the latest and each past time slices for the following
node embedding and spatial modeling. By the data connection across time slices,
TAGnn directly capture the long-term and short-term spatial-temporal propa-
gation features. And the introduced time residual connection enables the model
to capture the future evolution more easily. The empirical test results validate
the accuracy and efficiency of the proposed model. Note the time prior used in
this work is plain time identification information independent of the traffic data.
When the traffic state changes differently than usual due to events or other fac-
tors, the time prior may not necessarily play an auxiliary role. Increasing the
robustness of TAGnn against abrupt changes is our future work.
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