13144

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2025
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Abstract— Traffic flow forecasting is a strongly supportive
component of intelligent transportation services. While in light
of the expanding road networks or city grids, there is a critical
concern to enhance both the accuracy and efficiency of prediction
models. Despite the remarkable improvements in prediction
accuracy, existing research continues to face three limitations
in practical engineering scenarios. Firstly, current research often
overlooks the time delay characteristics when capturing spatial
relationships between global nodes. Secondly, most approaches
have a quadratic computational complexity with respect to the
number of nodes, resulting in significant training overhead and
poor scalability. Furthermore, studies that do consider dynamic
spatial relationships typically require complex model structures,
resulting in higher computational costs. To address these issues,
we propose a Time-Lag Aware Spatial-temporal Transformer
(TLAST), a lightweight yet effective traffic flow forecasting
model. TLAST introduces a cross-time strategy into the embed-
ding stage and the attention extraction to capture the time-lag
aware spatial-temporal features. Furthermore, we propose a
Spatial Proxy Attention (SPA) module. It utilizes proxy repre-
sentations to efficiently capture time-varying spatial dependencies
with linear complexity, significantly reducing computational over-
head. Extensive experiments on seven real-world traffic datasets
demonstrate that TLAST consistently outperforms state-of-the-
art baselines, achieving up to 7.84% improvement in prediction
accuracy (MAE) while reducing memory usage and time cost
by 85.21% and 75.14%, respectively. Results from the empirical
analysis not only demonstrate the model’s efficiency and scalabil-
ity but also highlight its practical usability in real-world traffic
forecasting scenarios.

Index Terms— Spatial-temporal data mining, self-attention,
linear transformer, traffic flow forecasting, time lag.

I. INTRODUCTION
RAFFIC flow forecasting aims to predict future traffic
flow for spatial nodes (e.g., road sensors, city grids)
within a transportation network. As a strongly supportive
component of intelligent transportation services, traffic pre-
diction attracts more and more attention in both academics
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Fig. 1. Examples of global spatial associations with time entanglement. Data
of nodes are from the PEMSO08 dataset [1]. (a) Full global spatial correlations
results in a quadratic complexity. (b) Global spatial relationships persist not
only within the same time interval but also across time. (c) Traffic patterns
of adjacent nodes (Node #41 and Node #43) exhibit similarity in a lagged
time window (red rectangles) while being opposite in the same time periods
(green rectangles). (d) Global nodes (Node #124 and Node #117) display a
weekday similarity but diverge on weekends.

and industry. The recognition of the spatial-temporal rela-
tionship between traffic nodes is a key prerequisite of traffic
prediction, and a thorough comprehension of spatial-temporal
characteristics can guide the concise and effective design
of model architecture. Furthermore, the traffic monitoring
capabilities in cities are continuously evolving, driven by
the rising deployment of road sensors and the improved
granularity of urban area division. These factors contribute
to the growing complexity of road networks or city grids.
Consequently, meeting prediction needs in practical traffic sce-
narios requires a careful balance between algorithm accuracy
and efficiency. Despite the remarkable progress in prediction
accuracy within existing research, there are still two challenges
that warrant further exploration: the modeling of time-lagged
spatial-temporal patterns and the computational efficiency of
prediction models. These challenges are described in detail
below.

1) The spatial interdependence of traffic nodes exhibits
time-lagged effects and dynamic variations as traffic
propagates. First, the spatial relationships among global
traffic nodes exhibit temporal continuity due to the traffic
propagation. As illustrated in Figure 1(a)(b), global spatial
relationships persist not only within the same time interval but
also across time, particularly those between geographically
distant nodes [2]. Intuitively, Figure 1(c) epitomizes this time
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Fig. 2. Examples of the maximum spatial associations among various time
lags on PEMSO08 dataset. (a) The inter—node correlations increase markedly
under time delays. (b) The complexity of time lags are also time-varying.

delay effect: two spatially adjacent nodes exhibit similar
traffic patterns only when analyzed with a temporal offset (red
rectangles), yet display opposite behaviors when compared
synchronously (green rectangles). This observation indicates
that Node 43 lags Node 41 by one time step. Motivated by this
illustrative case, we systematically quantify the delay effect
across the entire network based on the max-cross-correlation
method [3] (formal details are provided in Section III).
Figure 2(a) depict the inter—node correlation matrix and its
distribution for the PEMSO08 dataset between 10:00 am and
11:00 am, revealing that correlations increase substantially
under various time lags. Thus, incorporating time lags
into spatial-correlation modeling uncovers latent, effective
dependencies and enables the model to learn spatio-temporal
patterns with reduced bias.

Second, spatial correlations among traffic nodes are intrin-
sically time—varying. Figure 1(d) exemplifies this by showing
a pair of global nodes whose patterns align on weekdays but
diverge on weekends. When optimizing for maximal correla-
tion via appropriate time lags, the complexity of these delays
also varies across time, as shown in Figure 2(b). Accordingly,
capturing the dynamic nature of spatial correlations is a critical
component of accurate traffic forecasting.

2) Modeling spatial correlations between all pairs of
nodes lead to significant computational costs and poor
scalability of the prediction model. Beyond temporal entan-
glement, spatial scale presents another key challenge for
inter-node correlation analysis. Predefined local correlations
based on geographic distance or connectivity is insufficient
to reveal the potential relationships of global nodes [4], [5].
Thus the focus of spatial mining research has expanded to a
global scale. To perceive the global spatial correlation of traffic
nodes, a common and intuitive approach is to model pairwise
relationships between all nodes, as shown in examples of
Figure 1(a). However, modeling the pairwise correlation often
results in quadratic growth of training costs with the increasing
number of traffic nodes, making it prohibitively expensive for
large road networks or fine-grained urban grids. Moreover,
to achieve a comprehensive understanding and prediction of
traffic dynamics, the spatial correlations among nodes can
often extend beyond the temporal perspective to a broader
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perceptual domain [1], potentially increasing the scale of
global feature space. In such scenarios, traversing each pair
of elements in the spatial-temporal domain for prediction
becomes computationally demanding. Hence, the crucial chal-
lenge lies in finding ways to reduce computational complexity
while preserving superior prediction accuracy.

Many deep-learning-based studies in the traffic flow fore-
casting field have turned the research perspective to dynamic
spatial mining on a global scope. A number of research
constructs multiple graphs at timeline levels or spatial semantic
levels to reveal the time-varying and various correlations
among traffic nodes. However, the global spatial relationships
they establish are frequently limited to nodes within the same
time interval and lack connectivity with temporal spans. This
constraint poses a challenge in addressing the time lagged
effect of spatial relationships. Additionally, the consideration
of complex dynamic spatial-temporal dependencies in these
methods has resulted in increasingly intricate model structures
and escalating computational costs. Furthermore, certain stud-
ies rely on pre-analyzing the dataset to provide node-similarity
priors, but this will introduce additional preprocessing over-
head and lack the flexibility to directly capture the temporal
delays of spatial dependencies from individual input samples.

To address these issues, we propose a Time Lag Aware
Spatial-Temporal Transformer for traffic flow forecasting
(TLAST). To effectively capture time-lagged and dynamic
spatiotemporal features, we introduce a cross-time spatial-
temporal embedding method, within which a time-lag embed-
ding module is introduced to model the gaps between time
embeddings as a unique identifier. Second, during attention-
based spatial-temporal modeling, we link the spatial features
of the most recent time interval with those of all preceding
time steps, enabling direct modeling of delay-aware depen-
dencies. In terms of enhancing model efficiency, the aforemen-
tioned designs for node embedding and feature extraction are
instrumental in streamlining model architectures and lowering
computational overhead. In addition, we propose a Spatial
Proxy Attention module for spatio-temporal feature extraction.
It dynamically aggregates node features into a compact set
of proxy node representations via learnable readout functions.
By computing attention weights between proxy nodes and all
nodes, we obtain full-resolution spatiotemporal features while
reducing computational complexity to a linear scale relative to
node count. This helps to preserve competitive prediction per-
formance while significantly reduce computational overhead.

The main contributions of this work are as follows:

e A Time-Lag Aware Spatial-temporal Transformer
(TLAST) model framework is proposed for traffic flow
forecasting. We propose a new Time-Lag Embedding
module to explicitly model the time-lagged feature as
a unique temporal identified information. Meanwhile,
we extract global node correlations between the most
recent time interval and previous ones. These break
the constraint of extracting global and dynamic spatial
relationships in an isolated time interval. This cross-time
setting helps to efficiently extract the spatial-temporal
dependencies from a perspective of traffic propagation
with light training costs.
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« We propose a Spatial Proxy Attention (SPA) module that
employs a two-stage multi-head attention mechanism
to linearly capture spatiotemporal dependencies across
time. Meanwhile, a linear prediction module compresses
the extracted spatiotemporal features into a latent rep-
resentation, from which time—interval-wise predictions
are generated. Together, these components collectively
achieve linear computational complexity with regard to
both traffic node quantity and sequence length. This
framework allows models to be feasibly trained on
large traffic datasets while preserving superior prediction
accuracy.

« Experiments results on seven real-world datasets show
that TLAST outperforms state-of-the-art baselines in
terms of prediction accuracy, while also significantly
reducing computational consumption. Compared to the
baseline method with the best accuracy, TLAST achieves
up to 85.21%/ 75.14% improvement in memory overhead
and training time cost. Furthermore, extensive empirical
studies provide insights into the spatio-temporal charac-
teristics of diverse traffic datasets, thereby aiding in the
development of targeted traffic spatial-temporal mining.

II. RELATED WORKS

We aim to forecast future traffic conditions by analyzing
the spatial-temporal connections between nodes using a
Transformer-like architecture. However, faced with the
burgeoning data scale in the real world, considering both
the accuracy and scalability of spatial-temporal prediction
algorithms has become an increasingly critical concern.
We will first review the spatial-temporal modeling methods
in existing traffic flow forecasting research and two groups
of complexity reduction methods in Transformer models.

A. Spatial-Temporal Mining for Traffic Flow Forecasting

To achieve high forecasting accuracy, it is crucial to
model latent spatial-temporal patterns of the traffic data. Early
methods [6], [7] are utilized for summarizing the temporal
characteristics of traffic flow changes. They are computation-
ally efficient but labored to achieve good accuracy in complex
scenarios. Deep learning methods exemplified by Convolu-
tion Neural Networks (CNNs), Recurrent Neural Networks
(RNNSs), Graph Neural Networks (GNNs), and Attention-based
models have showed great potential of spatial-temporal
patterns mining.

Graph-based methods [1], [4], [8], [9], [10], [11], [12], [13],
[14] are effective in modeling message propagation between
spatial nodes, but learning reliable and time-coupled global
graph structures remains challenging and requires a significant
amount of time and effort. Many Attention-based studies [5],
[15], [16], [17], [18], [19], [20] consider the non-locality and
dynamics of spatial connections with the attention mechanism.
Furthermore, ST-SSL [21] and SSTBAN [18] incorporate
self-supervised learning methods into the field of traffic flow
forecasting. In contrast, our TLAST focuses on the design
of encoder and predictor, without relying on self-supervised
methods, yet allowing for seamlessly integration with them.
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Recent advancements in traffic prediction research remain
centered on modeling dynamic inter-node correlations, where
multi-view graph structures are constructed through dynamic
graph learning modules or attention mechanisms [22], [23],
[24], [25]. Building upon this foundation, additional traffic-
specific considerations have been systematically incorporated,
including hierarchical temporal decoupling of sequences [25],
[26], prioritization of pivotal graph nodes [27], and time-delay
feature modeling [17]. Concurrently, novel approaches adopt
adaptive embeddings and hybrid neural network architectures
(e.g., MLPs, Mixture-of-Experts) for structural innovation
[19], [20], [26], [28], effectively reducing computational over-
head while maintaining performance.

Among them, PDFormer [17] distinctively introduces a fea-
ture transformation module to model the time delay in spatial
propagation by clustering short-term historical traffic flow
series in advance. STAEformer [19] proposes spatio-temporal
adaptive embeddings, empowering vanilla Transformers to
achieve state-of-the-art accuracy without complex architectural
modifications. TESTAM [20] introduces a Mixture-of-Experts
(MoE) architecture with dedicated modules to dynamically
capture traffic patterns. Compared with these methods, our
TLAST focuses on spatial mining by Transformer-type archi-
tecture with less computational complexity. It aims to capture
the dynamic and time-lagged spatial-temporal features with a
lightweight time lag aware modeling.

B. Complexity Reduction in Transformer Models

To capture inter-node spatial-temporal features for traffic
forecasting, Transformer [29] is a common-used and effective
tool based on the attention mechanism. A canonical Trans-
former explicitly extracts associations between all pairs of
input tokens and generates a weighted representation, which
results in quadratic complexity in both space and time level.
In recent years, researchers have proposed numerous methods
to reduce complexity in Transformer models. These methods
can be broadly categorized into two groups: The first group
focuses on leveraging mathematical methods [30], [31], [32]
to approximate or replace the original attention mechanisms
in the Transformer architecture. These studies primarily target
graph nodes that do not have any inherent sequence relation-
ships. In comparison, our TLAST also targets spatial nodes
but we do not modify the attention architecture itself by any
replacements.

The second group aims to reduce the number of input
tokens for attention mechanism. It minimize the computations
required for pair-wise attention score calculations [33], [34],
[35] based on certain prior assumptions (e.g., temporal order).
In addition to treating temporal sequence elements as tokens,
two studies also employ this approach to capture correlations
between spatial representations: Crossformer [36] introduces
a route mechanism with static learnable parameters to achieve
linear complexity with respect to variable dimensions, which
motivates our work. Similarly, SSTBAN [18] employs a bot-
tleneck mechanism using fixed proxy tensors to reduce the
complexity related to node count. Our TLAST falls within
this group but differs by adopting a learnable function to
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Fig. 3. Two types of traffic graphs: road networks (left) and city regions
(middle). The traffic nodes are road sensors and city grids, respectively.

generate dynamic proxy nodes from input features. These
proxies interact with representations from different time steps,
highlighting their temporal adaptability.

III. PRELIMINARY

Various types of transportation network systems can be
represented as graphs G = (V, £). In terms of the spatial scope
of a single observation point, traffic graphs can be divided
into two types: road networks and city regions, as in Figure 3.
Accordingly, the node set V represents a group of sensors in
road segments or multiple city regions, where |V| = N, and
N is the number of traffic nodes. £ contains edges between
traffic nodes in terms of geographical distance or connectivity.
Generally, city regions can be divided into Euclidean divisions
and non-Euclidean divisions based on urban geographical
spaces. In this work, we focus on the Euclidean division of
city regions, i.e., city grids, for diversity. Usually, an adjacency
matrix A can be used to present this graph.

The 24 hours of a day can be equally divided into 7 time
intervals according to certain frequencies. Each time interval
has two time indexes, identifying the time interval of the
day and the day of the week. The traffic value generated
by all nodes in a time interval #; can be aggregated into
a matrix X; € RV*C where C is the number of traffic
features (e.g., flow). The traffic flow forecasting problem can
be formulated as: Given road network or city grids G, T' time
intervals and their time indexes, we need to use the historical
traffic tensor X = [X,_741,..., X;_1, X;] € RT*XNxC o
predict the future data in the next consecutive 7’ time intervals
Y = [X/+1, X¢42, ..., Xyy717]. Here, X, represents the traffic
data at the latest time interval ¢.

To quantify the time delay effect in traffic data, we define
the maximum correlation matrix S, and associated time lag
matrix A, based on the max-cross-correlation method from
literature [3]. Specifically, for an input X € R7*¥*C within a
given time window, the cross-correlation matrix R©® € RV*N
under time delay § is formulated as:

R®) = Corr(X[8:,i,:], X[: T =5, j,:1). 8 € [0, 8max. (1)

where Corr denotes the correlation computation function,
which can be implemented using metrics such as Spearman
coefficient, Pearson coefficient. dyax is the manually config-
ured upper threshold for the time delay. Then the maximum
correlation matrix Sy and associated time lag matrix A, are
defined as:

(82);. = max R}f?, (A,);,; = argmax R}jsj?. 2)
S
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When § =0, Sy = RO ig the prior correlation matrix within
the same time interval. Additionally, we define the Time Lag
Entropy to measure the complexity of optimal time lags:

Smax

Entropy(As) = — Y p(8)log, p(s). 3)
§=0

- I((A); =68 .. .
Here p(8) = z"((—z)’) The empirical analysis of these

metrics motivated our model design, which will provide new
insights into traffic data analysis.

IV. METHODOLOGY

Figure 4 shows the overall framework of the proposed
TLAST model. The main idea of our model is to directly
capture the spatial correlation between nodes in the latest
period and past ones, and use a proxy mechanism to reduce
the time complexity with a Transformer-type architecture.
TLAST model mainly consists of three parts, 1) the Time Lag
Aware Embedding module, 2) the Cross-time Spatial-Temporal
Feature Extractor (CSTFE) module, and 3) the Time-interval-
wise Prediction Module.

The raw input tensor X € RT*N*C is firstly transformed
into a high dimensional representation Z € R7*¥*4 through
the Time Lag Aware Embedding module, where d is the
embedding dimension. Then we use a readout function to
convert the representation Z; € RM*“ in the latest time
interval ¢ into P, € R™*d_ where m is a constant value
extremely smaller than N. P, potentially denotes a high-level
node summary information. 7 time intervals share one Cross-
time Spatial-Temporal Feature Extractor (CSTFE) with the
same parameters. This module contains a Transformer-type
encoder with a skip connection. Differently, the self-attention
block in the encoder layer is replaced by a proposed Spatial
Proxy Attention (SPA) block. This block contains two attention
calculations where the first one uses P; to produce a small
query and the second one recovers full node features, which
significantly reduces the number of query-key pairs in calcu-
lation and explicitly extracts the cross-time spatial correlation.
The outputs of the CSTFE are then concatenated into H37 ¢
RNxTd, Finally, the Time-interval-wise Prediction Module
transform H57 into future traffic features X € R7 *N*C with
individual decoder units and the time skip connection from X;.

A. Time Lag Aware Embedding

Our empirical analysis in Section III and Figure 2 shows that
inter-node correlations increase markedly at particular time
lags. Motivated by this, we hypothesize that incorporating
delay information into the extraction of spatial dependen-
cies among nodes can enhance predictive accuracy. However,
explicitly enumerating all possible delay combinations would
incur an unsustainable computational burden. To address this,
we treat the features from the most recent time slice as an
anchoring reference and encode delay information via the
differences between this anchor and the features at various past
time slices. The interaction between these two representations
then serves to approximate the time-lag-aware spatial corre-
lations. From a feature—encoding perspective, this embedding
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Fig. 4. The overall framework of the proposed TLAST model.

module enhances the model’s sensitivity to time-lag informa-
tion through three components.

The first component is the cross-time data embedding.
We concatenate the input tensor in each time interval ¢ — i
(i €{0,1,---,T—1}) with that of the latest time interval ¢ and
convert them into a high-dimensional representation through
an MLP layer:

X9 = MLPy, (IX,—i]|X;]) € RV, “)

where [-||-] denotes the concatenation along the feature dimen-
sion. We define ML Py as two fully-connected layers with a
ReLU activation in between, 6 is the corresponding parame-
ters. M L Py, here is shared on all time intervals. Collectively,
the entire data embedding from T time intervals is X% =
[Xtci(?il’ i Xtci(;”’ e XtcrOSS] e RTxNxd_

The second component is the temporal embedding and spa-
tial embedding. Traffic data generally show periodic changes
on a daily and weekly scale. Time information (i.e., the time
interval of the day and the day of the week) is an intuitive,
simple, and effective indicator of traffic flow changes. For
example, traffic flow often peaks during weekday rush hours.
In addition, traffic nodes distributed in urban space always
show a certain degree of functional heterogeneity influenced
by their geographical locations, although we usually only
consider the same type of traffic data (e.g., flow). This causes
the difference in traffic patterns of different nodes. To make
the model perceive the uniqueness of nodes in time and
space, we introduce an embedding technique to represent these
identifications. Specifically, we build three embedding tensors
with learnable parameters: plime ¢ RTXd, Dday ¢ R7%4_ and
Dspace ¢ RN*d representing time intervals of a day, days of a
week, and the space identification of all nodes. For the input
tensor of T time intervals, by looking up with time indexes
and node indexes, the temporal embeddings X/¢ ¢ RT*4,
X2y ¢ RT*4 and the spatial embedding E*¢ € RV*? can be

obtained from D'™¢ D49y and DP9 The time embeddings
are added into E'¢ = X'ime 4 xday,

The third component is the time-lag embedding. Building
on the temporal embeddings, we compute the difference
between the most recent time embedding and each historical
one, and then encode these differences via another shared MLP
to identify information of different time lags:

E!'*, = MLPy,(E!* — EI*)). (5)

Note that all nodes share the same temporal embedding and
time-lag embedding in each time interval and all time intervals
share the same spatial embedding.

These embedding tensors are then added through a broad-
casting mechanism with X% to generate X¢"?:

Xemb — Xcross + Ete + ES¢ + Etle c RTxNxd. (6)

Here, during training phase, embeddings are followed by a
dropout layer with rate ¢ to alleviate overfitting. Finally,
inspired by [16], we use an equal-width convolution layer
along with the time dimension to model the local trend with
a 7 x | kernel:

Z = Convyy (X)) e RTXNxd, (7

Z is the spatial-temporal context-aware data representation,
and Z=[Z;—1+1,---,Zi—i,..., Zs], where Z;_; € RN>d,

B. Cross-Time Spatial-Temporal Feature Extractor

We aim to capture spatial correlations between global
nodes in multiple time spans and then extract spatial-temporal
features on different time lags. Meanwhile, time complex-
ity reduction and redundancy alleviation are also important.
To achieve these two objectives, we design a Cross-time
Spatial-Temporal Feature Extractor module to model dynamic
and time-lagged spatial-temporal dependencies in a linear time
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complexity by three components: Node Proxy Mechanism,
Spatial Proxy Attention (SPA) block, and a Cross-Time Mod-
eling framework.

1) Node Proxy Mechanism: In the global space scale,
it is not necessary to clearly explore the degree of spa-
tial connection between each pair of nodes, because it is
time-consuming and perhaps only a few nodes have important
contributions. However, identifying these prominent nodes or
pairs in advance is challenging. First, this selection process
may introduce unwarranted induction bias. Second, the prede-
fined node relationships may not always be valid over time.
Instead of taking the entire set of nodes or a subset of them
for attention computation, we first use a readout function to
aggregate the node representation Z, € RV*? in the latest
time interval into a fixed-size matrix P; € R™*d where m is
a small constant value. This summary matrix P; can be used
to calculate attention scores with all nodes in each past time
interval later. Specifically, we use a linear layer as the readout
function:

P=(Z] WP +pP)T e R™4, (8)
where WP e RV>m pP ¢ R™ are the parameters in the linear
projection. P; can be regarded as m proxy node representations
summarizing various factors of entire nodes.

2) Spatial Proxy Attention (SPA) Block: We apply the
Multi-Head Attention (MHA) mechanism [29] on the spatial
dimension. This enables the input tokens to be spatial node
representations on a single time interval, rather than a time
series of a single node. The MHA mechanism we used in this
work is formulated as:

MHA(Q, K, V) = Concat(heady, head; . . . .headh)WO
0 K\T
W) (KW
where head; = softmax((Q DKW )(VWI.V),
~dj
9

where 9 € RNexd gk ¢ RNkxd 'y ¢ RNcxd are the
packed query, key, and value matrices, No is the 1ength of
the query, N is the length of the key and value, W WK
RA>dk | le Ridxdy WO g Rhdvxd gpe parameters of hnear
projections, here bias vectors are omitted for brevity, & is the
number of heads, and dy = d, = d/h.

An SPA block contains two MHA attention operations
with different query-key-value combinations. For the first one,
we use P; € R"*? as the query and Z,_; € RV*? as the key
and value. The result of M HA| is used as the key and value
in the second one, and Z;_; is the query:

2zl = MHA\(P,, Zy—i, Z—;) € R™,
Z, . =MHAYZ,_;, 2P, 2P ) e RN*,

t—i

(10)
(1)

The time complexity of these two attention operations is
O@mNd). As m and d can be set to small constant values,
this attention block has a linear time complexity with regard
to the number of nodes. With Equation 10 and Equation 11,
the SPA block can be formulated as:

i’

Z, . =SPA(P:, Z_;) e RN*4, (12)
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Fig. 5. Comparison of mechanism between the full attention and our spatial
proxy attention.

The SPA block can be regarded as following a mini encoder-
decoder architecture. The first MHA attention block encodes
input tokens into intermediate proxy ones and the second block
recovers full node representations by looking up the proxy
ones. Correspondingly, attention matrices of a single head in
two MHA blocks can be formulated as A; € R™ and
Ay € RN>™_ Unlike prior works such as Crossformer and
SSTBAN, which use fixed, learnable proxy tensors after model
training (with sizes REparen xmxd and RM*2d | respectively), our
proxy tensor P; are dynamic mappings of node representations
obtained through a learnable readout function applied on Z;.

Figure 5 illustrates a comparison among the process of the
Full Attention and our SPA. A Full Attention block enables
full query-key pairs to be computed and holds an attention
score matrix with N2 size. By contrast, to output a N-length
node representation while reducing the number of query-key
pairs, we reduce the length of query tokens and combine two
smaller attention computation blocks. In an SPA block, only
2mN pairs need to be processed. Notably, when the proxy
representation P; is defined as an identity mapping of Z;
and the SPA module is replaced by a standard MHA block,
this module is equivalent to a Transformer encoder layer (i.e.,
Full Attention) extracting spatial features across different time
intervals.

3) Cross-Time Modeling Framework: The core of this
CSTFE module is encoder layers that contains a SPA block
and a fully connected feed-forward network (FFN) block. Both
blocks are followed by a dropout layer with rate ¢ during
training phase. Residual connections are employed around
both blocks.

FFN(x) = GELUGW/ + b yW] +b],  (13)

where GELU [37] is an activation function. To capture corre-
lations in multiple time spans, we keep the input query fixed
to be from the latest time interval ¢ and perform computations
with the key and value from each time interval. This allows
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global nodes in each time interval to be directly linked with
proxy nodes in the latest period. Specifically, as demonstrated
in Figure 4, T time intervals share the same CSTFE with the
same parameters and the same input query P;. The benefits of
this sharing mechanism are twofold: saving model parameters
and reducing the risk of overfitting to some extent. A residual
connection is also employed around the encoder layers:

H,_; = STEncoder(P;, Zi_;) + Z;—; e RN*4 (14)

Without loss of the generality, the ST Encoder could contains
L encoder layers, each comprising an SPA block and an
FFN block with residual connections. Finally, the outputs
from T time intervals are concatenated on feature dimension
into HST = [H;_71|| ... [|Hi—il| ... ||H;]1 € RNXT4 In this
module, we do not perform separate analysis on the entire
historical time series of each node. Instead, features combined
across time are extracted via a shared spatial encoder. This
structure could also support further reduction of training time
consumption through matrix parallel computation.

C. Time-Interval-Wise Prediction Module

Once we obtain the merged spatial-temporal features H57 e
RN*Td aggregated by the encoder, to avoid quadratic com-
plexity such as O(NTT’) in the predictor, we project the
representation 37 onto a d’-dimensional space. Here, d’ is a
constant value. Then we further map it to prediction values
at each future time step. Following our recent study [38],
we incorporate the most recent input X, at each prediction
step to generate future values that reflect traffic evolution.

H' = GELU(HST wde 4 piey ¢ RN*d', (15)
Ripj = Xi+ H'WIS + {2 e RV<Cor . (16)

’ ’
where W ¢ RTdxd pde o RA gre parameters of
. . de2 d' xC,, de2 C,
the nonlinear mapping, W 4 € R out , by i € R%ou

are parameters of linear projections at each time step,
d’ is the hidden dimension, and C,,; is the number
of predicted feature dimensions. The final prediction is
Y = (X1, Koy jo ooy Xyl € RTXN*Cou Unlike our
earlier work [38], which introduced time-aware adjacency
learning using GNNs, TLAST differs in both modeling design
and computational strategy. Specifically, we introduce the
time-lag-aware embedding module, the SPA mechanism, and
the merge of spatial-temporal features to reduce complexity
while preserving spatio-temporal expressiveness.

D. Complexity Analysis

We conduct the theoretical complexity analysis of our
TLAST model in this subsection. TLAST processes the input
tensor X € RT*N*C through a three-stage architecture:

1) Time-Lag Embedding Module: Initially, we concatenate
X;—; with X; for all i € [0, T — 1], followed by a linear
projection to X< ¢ RT*Nxd incurring O(TNCd) time
complexity and O(Cd) parameter space. Subsequently, three
learnable parameters are queried to generate temporal and spa-
tial embeddings, introducing O((7 +7+ N)d) parameter. Next,
time-lag embeddings are computed by a shared two-layer MLP
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(O(Td?) time, O(d?) parameters). All embeddings are then
broadcast-added to X“"?** (O(T Nd)), followed by a local tem-
poral convolution, contributing O(T Ntd?) time complexity
and O(td?) parameters.

2) Cross-Time Spatial-Temporal Feature Extractor: The
embedded feature representations Z € RT*N*4 are subse-
quently fed into this Transformer-like architecture. In this
design, we treat only the spatial variable features as tokens
and employ a shared extractor across all time intervals.
By introducing Queries and Keys from different time steps,
the model captures time-lagged spatial dependencies. Under
a full attention mechanism (i.e., Transformer encoder layer),
this design incurs a time complexity of O(LT (N 2d 4+ Nd?))
and a parameter complexity of O(Ld?). In contrast, when our
proposed SPA module is used as the attention mechanism, the
total time complexity is reduced to O(mN+LT (mNd+md>+
Nd?)), and the parameter complexity becomes O(mN +Ld%),
which includes an additional readout function with a time and
space complexity of O(mN). By setting m as a constant, the
module demonstrates linear complexity relative to the number
of nodes N.

3) Time-Interval-Wise Prediction Module: Finally, the
merged spatiotemporal features H57 € RV*T4 are used to
predict future values at each time step. A fully connected layer
first maps these features to a shape of (N, d’), introducing a
time complexity of O(NTdd") and a parameter complexity of
O(Tdd’). Subsequently, T’ independent fully connected layers
are employed to project these representations into the final
future values, resulting in a time complexity of O(NT'd’Coyt)
and a parameter complexity of O(T'd’Coy).

In summary, the overall time complexity of the proposed
TLAST model (with SPA attention block) is O(TNCd +
TNtd? + TNd?* + mN + TL(mNd + md* + Nd* + d*) +
NTdd'+NT'd Coy). Assuming constant input feature dimen-
sion C, output dimension C,y, and setting m as a small
constant, under fixed configurations of L, d, and d’, the
model’s complexity asymptotically approaches O(T N +T’'N).
Regarding the memory and parameter requirements, the overall
space complexity of the model is O(C+T+N)d+(t+L)d*+
LTmN + Tdd' + T'd' C,,;), which approximates to O(7 +
N+TN+T’) under the same constant assumptions. It is worth
noting that while the above analysis addresses the theoretical
complexity, the actual computational cost during inference and
training is equally critical. We report the empirical runtime and
memory consumption of the model in Section V to validate
its practical efficiency advantages.

V. EXPERIMENTS

We conduct experiments to answer the following 5 research
questions:

o RQI1: How is the prediction accuracy of TLAST com-
pared to various baselines?

« RQ2: How is the computational efficiency of TLAST in
terms of memory usage and time cost?

« RQ3: How does the number of proxy nodes in SPA affect
the performance of TLAST?

« RQ4: How do core components in the model framework
of TLAST benefit the model performance?

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on October 12,2025 at 05:55:11 UTC from IEEE Xplore. Restrictions apply.



ZHENG et al.: TLAST: A TIME-LAG AWARE SPATIAL-TEMPORAL TRANSFORMER FOR TRAFFIC FLOW FORECASTING

TABLE I

THE DETAILED STATISTICS OF DATASETS AND
THE HYPERPARAMETER SETTINGS

Data Type highway traffic flow city grid inflow and outflow
Datasets | PEMS04 | PEMS07 | PEMS0O8 | CA | NYCTaxi | CHIBike | T-Drive
75 270 1024
#Nodes N 307 883 170 8600
(15x5) | (15x18) | (32x32)
#Ti
me 16992 | 28224 17856 | 35040 | 17520 4416 3600
steps
ti Spé
ime span Smin Smin Smin | 15min | 30min 30min | 60min
per step
fisteps 288 288 288 96 48 48 2
per day T
Missing rate | 1.59% 0.45% 035% | 232% | 1201% | 8633% | 22.75%
5 m 8 3 8 2 4 2 4
% d 64 64 64 64 64 32 64
g d 1024 1024 1024 1024 1024 16 512
5 h 1 1 2 2 4 1 4
j=
B L 1 1 1 1 3 3 3
CA
I3} v 2.5
2 06+ NYCTaxiy — PEMS08
>
5 ° T-Drive N 20 es
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Fig. 6. Comparison of average correlations and time lag complexity across
two dataset types.

o RQ5: Can SPA learn time-varying spatial correlations to
represent traffic patterns?

A. Datasets and Baselines

We evaluate the performance of our TLAST on seven real-
world datasets, including three small or medium sized road
network datasets [1] (PEMS04, PEMS07 and PEMSO08), one
large road network dataset (CA [39]), and three city grid
datasets (NYCTaxi [40], T-Drive [41], and CHIBike [42]).
The four road network datasets record the highway traffic flow
data of nodes denoting road sensors. The input and predicted
feature dimensions are both 1, i.e., C = C,,; = 1. The other
three citywide datasets contain a group of grids, each of them
being a city area with inflow and outflow data. For city grid
datasets, C = C,y; = 2, i.e., inflow and outflow. The details
of seven datasets are shown in Table I.

We further conducted a statistical analysis of time-delay
phenomena on the training sets of all datasets from two dif-
ferent categories, using the method introduced in Section III.
As shown in Figure 6, we report the average values of the
correlation matrices S, and Sy, computed with and without
considering time lags, respectively, along with the entropy of
the corresponding optimal time lags A.. dmax is set to 6 and
3 for road network datasets and city grid datasets. Results
indicate that incorporating time lags consistently enhances the
correlation across all datasets. Notably, road network datasets
exhibit more complex and pronounced time delays compared
to urban grid datasets. The lower delays observed in grid-based
datasets may be attributed to the coarser granularity of spatial
partitioning.
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We compare TLAST with 1 naive method Historical Last
(HL) [43] and 11 representative deep-learning based methods.
HL simply use the last observation as all the future predictions.
Deep-learning based baselines can be divided into two groups,
including six graph-based methods (DCRNN ([8], STGCN [9],
GWNET [4], STSGCN [1], STGODE [10], STGNCDE [11]),
and five self-attention based methods (GMAN [5], AST-
GNN [16], PDFormer [17], STAEformer [19], TESTAM [20]).
Besides, we introduce a variant of our TLAST model, denoted
as TLAST(full), in which the proposed SPA module is
replaced with a full attention mechanism.

B. Experiment Setting

The implementation! of the proposed model is under the
PyTorch framework on a Linux server with one Intel(R)
Xeon(R) Gold 5220 CPU and one 32GB NVIDIA Tesla V100-
SXM2 GPU card. For a fair comparison, we maintain the
consistency with the dataset-setting used in previous methods
[17], [39]. Specifically, we split four road network datasets
into the training, validation, testing sets with a ratio of 6:2:2
and 7:1:2 for the other three grid datasets. For PEMS datasets,
the input length T and the predicted length T’ are both 12,
leading to a one hour ahead prediction (5 minutes for one
time step). For CA dataset, T and T’ are both 12, leading to
a three hour ahead prediction (15 minutes for one time step).
Following [39], one year of traffic data from 2019 is used. For
three grid datasets, T is 6, and 7’ is 1. We employ standard
normalization to standardize input features and recover them
to real values for the loss calculation. We choose the Huber
Loss [44] as the loss function. We use AdamW [45] as the
optimizer during the model training with a learning rate of
0.001 for 100 epochs.

We use the grid search technique to set the hyper-parameters
of the model. Five important hyper-parameters m, d,d’, h, L
are shown in Table I. The kernel size of time convolution T in
the embedding module is set to 3, and the dropout rate ¢
is 0.1. Since m is critical to the efficiency of the model
implementation. The sensitivity of the TLAST model to m is
further discussed in Subsection V-E later. We use three metrics
to evaluate the prediction performance: Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), and Root
Mean Squared Error (RMSE). All missing values are excluded
from the evaluation for road network datasets. Following
previous methods [17], [46], values below a threshold are
not included in the evaluation for grid datasets. The filter
thresholds are 10, 10, and 5 for NYCTaxi, T-Drive, and
CHIBike respectively. We report the average results obtained
after repeating the experiments no less than five times. Besides,
for a fair comparison with baselines [17], the results on
grid datasets are average values of the inflow and outflow
evaluation indicators.

C. Prediction Accuracy Comparison (RQI1)

Table II and Table III show the prediction accuracy
comparison for average results of all predicted horizons

IThe code is available at https://github.com/zhuoshu/TLAST
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TABLE II
COMPARISON OF PREDICTION ACCURACY ON THREE ROAD NETWORK DATASETS
Method PEMS04 PEMSO07 PEMSO08
MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE
HL 31.56 10.00 21.39 to.00 47.59 +0.00 | 3545 to.00 15.66 10.00 52.57 to.00 | 2528 to.00 15.62 +o.00  37.79 to.00
DCRNN 20.34 to.07 1398 1o0.06  32.20 10.13 | 2245 10.03 974 to.o2 3541 1o0.03 | 1594 10.10 1019 10.06 2512 1o0.12
STGCN 2236 +0.25 1500 £0.11  34.62 +0.34 | 2491 +0.40 1090 10.21 3821 to.40 | 1796 +0.08 11.33 +o.07  27.58 t0.15
GWNET 19.04 1t0.04 1340 1013 3043 to.04 | 2079 £o.09  9.00 £o.12  33.76 to.09 | 15.11 £0.12  10.09 to.65 24.02 1o.17
STSGCN 22.30 +0.32 15.23 +0.59 35.18 +0.43 25.27 +0.24 10.92 +0.15 40.43 +0.48 17.95 +0.18 11.82 +0.24 27.55 +0.22
STGNCDE 20.04 10.15 13.76 +0.14 31.73 10.19 | 21.95 +0.14 9.33 +0.06 3495 10.14 16.52 +0.26 1041 +0.15 25.88 +0.40
GMAN 19.67 +0.10 1489 1071 31.05 £o.19 | 21.03 £o.15 950 £o.18 3398 to.28 | 15.65 £0.14  12.27 £1.29  24.55 to0.10
ASTGNN 1921 4012 1296 +0.11 3090 +0.10 | 21.08 +o.27 885 +0.14 3444 10.26 | 1536 +0.15  9.65 +0.13 2473 t0.14
PDFormer 18.37 +0.03 12.17 +0.07 30.00 40.04 19.82 4+0.06 8.44 +0.04 32.84 +0.05 13.79 +0.09 9.22 40.07 23.42 40.15
STAEformer 18.22 4+0.03 12.03 +0.04 30.20 +o.16 19.23 4+0.09 8.03 +0.04 32.75 +0.13 13.51 4+0.04 8.89 +0.05 23.27 4+0.09
TESTAM 18.53 +0.14 1249 40.14 3049 1051 | 20.11 49.25 8.36 +0.10 33.64 10.43 1472 +0.13 9.58 1+0.17 24.32 10.31
*TLAST(full) | 17.89 +o.02  11.80 +0.01  29.57 t+0.07 | 18.94 10.02  7.93 +0.02  31.95 1004 | 13.16 +0.01  8.65 +0.02  22.63 +0.04
*TLAST 17.90 10.01  11.78 10.03 29.53 10.02 | 1897 10.02 793 1002  32.03 10.01 | 1313 1001  8.63 1001  22.59 10.03
* Results of TLAST(full) and TLAST are statistically significant compared to the best baseline (t-test with p-value<0.05).
TABLE III
COMPARISON OF PREDICTION ACCURACY ON THREE CITY GRID DATASETS
Method CHIBike NYCTaxi T-Drive
MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

HL 5.34 to.00 4091 1000 7.57 +0.00 | 2095 +0.00 21.74 £o.00 34.56 +0.00 | 38.68 £0.00 28.23 10.00 73.43 +o.00
DCRNN 439 to0.02  32.69 +0.13  6.32 10.03 | 15.55 +0.03 16.07 10.02  25.18 to.07 | 24.33 to57 1834 1035 4242 1190
STGCN 4.01 +0.04 30.14 +9.21 5.81 4+0.05 14.69 4+0.08 1521 4+0.10 2397 +0.14 23.98 1+0.32 19.40 40.34 41.56 1061
GWNET 458 +0.08 3321 £0.73  6.73 1012 | 1717 £0.17 1644 1014 2972 1037 | 2793 £o.58  20.54 £0.40 4825 £1.11
STSGCN 412 +0.03 31.54 1024 587 +0.05 14.24 +9.10 1440 40.08 23.72 +0.24 | 2527 +1.58 19.77 +1.06  43.35 13.18
STGNCDE 4.58 +0.12 34.77 +1.00 6.52 +0.15 14.67 +0.17 14.83 +0.13 24.37 +0.25 29.94 +1.18 21.73 40.91 56.73 +2.19
GMAN 401 £0.08 3021 £0.43 5.78 +0.10 | 13.08 £0.16 13.86 +0.18 21.05 £0.26 | 18.79 +o.80 1648 +0.91  31.23 L£1.09
ASTGNN 440 +0.04 2975 +0.30 6.16 +0.05 | 13.50 +0.11 1433 £0.11 22.20 £0.17 | 27.13 £0.10  22.13 +0.10  51.85 10.19
PDFormer 3.98 +0.03 30.69 +0.29 5.61 +0.04 12.62 +0.07 12.96 +0.03 20.78 +0.16 17.86 +0.32 14.69 +0.31 31.82 +0.43
STAEformer 4.03 +0.04 31.07 +0.25 5.67 +0.06 12.40 +0.03 13.24 +0.04 20.47 +0.04 17.73 +0.12 14.89 4+0.13 31.92 +0.25
TESTAM 3.90 +0.07 29.71 +0.36 5.56 40.14 12.89 +0.06 13.50 +0.04 21.67 +0.18 19.49 40.21 1533 +0.13 34.69 +0.42
*TLAST(full) | 3.84 +0.05 29.69 +0.3¢ 543 1008 | 12.29 +0.02 13.10 +0.05 20.11 4007 | 16.51 +0.03 13.88 +0.01  30.16 +0.02
*TLAST 3.81 10.03 2950 10.31 536 1005 | 12.22 10.02  13.06 10.04 1999 1007 | 1634 10.09 13.79 10.05 29.88 10.23

* Results of TLAST(full) and TLAST are statistically significant compared

on PEMS datasets and grid datasets. The best results are
shown in bold and the second best results are underlined.
On PEMS datasets, our TLAST consistently outperforms
all baselines. Compared to the state-of-art baseline, TLAST
achieves an average improvement of 1.99%/2.06%/2.44%
in terms of MAE/MAPE/RMSE. For grid datasets, TLAST
achieves an average improvement of 3.86%/4.14% in terms
of MAE/RMSE. On NYCTaxi dataset, TLAST shows slightly
higher MAPE than PDFormer but outperforms the other
baselines. This is primarily due to a noticeable distribution
shift in the NYCTaxi dataset, where the test set values are
more concentrated in the lower range. As a result, the overall
MAPE of our model increases, while MAE and RMSE remain
relatively low. This observation highlights the importance of
developing models that are robust to distribution shifts, which
is a key direction for future research in traffic prediction.
Table IV showcases the results on the largest dataset CA
(8600 nodes), encompassing three specific horizons (3, 6,
and 12) and the average values across all predicted horizons.
On this dataset, many recent advanced methods encounter
challenges in training within acceptable time cost on devices
with limited space. This is attributed to their higher complexity

to

the best baseline (t-test with p-value<0.05).

and intricate structures. In comparison to the second best
results, our approach TLAST achieves an improvements
of 12.64%/21.13%/16.88% for MAE/MAPE/RMSE on the
average metric.

For DCRNN and STGCN, using the predefined and fixed
adjacency matrices hinders them to obtain good prediction
performance. Other four graph based methods explicitly
introduce auxiliary graph structures to facilitate traffic
forecasting, yet these graphs fail to reflect connections
across time. By contrast, our proposed model TLAST does
not rely on predefined adjacency matrix but can capture
the spatial correlation among distant nodes across arbitrary
time spans. Among the attention-based methods, TESTAM
incorporates a MoE structure to capture dynamic and latent
patterns in spatial dependencies. However, its design remains
confined to a single time slice, limiting its ability to model
temporal dynamics and resulting in suboptimal performance.
PDFormer employs the self-attention mechanism in both
space and time dimensions, and the introduced delay-aware
feature transformation module and two attention masks enable
it to achieve better results. STAEformer introduces adaptive
spatial-temporal embeddings and applies transformer-based
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TABLE IV
COMPARISON OF PREDICTION ACCURACY ON THE LARGE DATASET CA

Horizon 3 Horizon 6 Horizon 12 Average

Dataset | Method MAPE MAPE MAPE MAPE
MAE RMSE | MAE RMSE MAE RMSE MAE RMSE

(%) (%) (%) (%)

HL 30.71 20.40 46.94 51.55 37.18 76.44 89.32 76.79 125.68 54.10 41.61 78.97
DCRNN 17.52 12.55 28.18 21.72 16.56 34.19 28.45 23.57 44.23 21.81 16.92 34.35
STGCN 19.14 14.23 32.64 21.65 16.09 36.94 24.86 19.14 42.61 21.48 16.16 36.69
CA GWNET 16.93 13.14 27.53 21.08 16.73 33.52 27.37 22.50 42.65 21.08 16.86 33.43
STGODE 17.59 13.28 31.04 20.92 16.23 36.65 25.34 20.56 45.10 20.72 16.19 36.65
*TLAST 15.29 10.32 25.75 18.24 12.73 30.58 22.20 16.47 37.55 18.10 12.77 30.46
+0.06 +0.00 +£0.06 | +£0.13 +0.00 +0.13 | +£0.24 4+0.00 +0.26 | +0.14 +0.12 +0.13

* Results of TLAST model is statistically significant compared to the best baseline (t-test with p-value <0.05). Results of baseline methods
are derived from [39], the absence of other advanced baselines is due to the out-of-memory issues.

TABLE V
COMPARISON OF COMPUTATIONAL COSTS AND EFFECTIVENESS ON THREE TRAFFIC FLOW FORECASTING SCENARIOS

Scenario (T — T”) Model Time complexity w.r.t. N, T, T’ GPU Usage | Training time | Inference time MAE
(MB) (second/epoch) (second)

ASTGNN O(TN + NT? + TN? + NT'?) 9373 29.87 273 18.80

1 hour ahead prediction PDFormer O(TN +TN? + NT? + NTT') 16599 93.02 2.08 17.83

on T-Drive (6 — 1) STAEformer | O(TN + NT? + TN? + NTT") 15006 47.74 2.13 17.73

batch size: 16 TLAST O(TN + T'N) 2220 11.87 0.82 16.34
(185.21%) (175.14%) (161.50%) (17.84%)

PDFormer | O(TN +TN? + NT? + NTT’) 10892 216.45 19.99 1571

3 hour ahead prediction SSTBAN O(TN +T'N + NTT") 22519 516.90 36.76 16.50

on PEMS08 (36 — 36) | STAEformer | O(TN + NT? + TN? + NTT') 6544 121.29 11.96 15.39

batch size: 16 TLAST O(TN +T'N) 1364 48.93 5.14 15.34
179.16%) (159.66%) (157.02%) (10.32%)

DCRNN o(T+1")ED 21269 5501.75 952.03 21.81

3 hour ahead prediction GWNET O(TN? + NT + NT) 14179 5911.67 830.63 21.08

on CA (12 — 12) STGODE O(TN? + NT? + NTT") 30729 5764.61 923.74 20.72

batch size: 8 TLAST O(TN + T'N) 7436 717.01 85.56 18.10
(175.80%) (187.56%) (190.74%) (112.64%)

computations along both temporal and spatial dimensions,
achieving the best results on all datasets except CHIBike.
This suggests that adaptive embeddings spanning both time
and space can partially capture time-delay-related patterns.
In contrast to these models, our approach TLAST introduces
cross-time mechanisms in both the embedding stage and the
spatial dependency modeling stage. This design enables the
model to extract spatial features associated with varying time
delays more effectively, leading to superior prediction perfor-
mance. Compared to its variant TLAST(full), TLAST achieves
comparable results on road network datasets. TLAST(full)
shows a 0.25% improvement in RMSE on PEMSO07 but
performs slightly worse on PEMS04 and PEMSO0S. On the
grid-based datasets, TLAST(full) consistently underperforms
compared to TLAST. This may be due to the relatively weak
delay effects in these datasets, where modeling dependencies
across all spatial points introduces noise and leads to overfit-
ting. These show that TLAST with SPA achieves accuracy on
par with full attention, while enabling a more efficient design.

D. Efficiency Study (RQ2)

We conduct two groups of experiments to assess the
scalability of TLAST in terms of computational efficiency.

The computational costs include GPU memory consumption,
training time per epoch, and inference time on the entire test
set.

1) Prediction Efficiency: In the first group of experiments,
we compare the efficiency of TLAST with baseline models
on three scenarios: the short-term forecasting on medium
dataset (T-Drive), the long-term forecasting on small dataset
(PEMSO08), and the long-term forecasting on large dataset
(CA). In the comparison on PEMSO08 dataset, we introduce
a baseline method SSTBAN [18] that have superior pre-
diction accuracy on long-term forecasting and has a linear
computation complexity with respect to the number of nodes.
Table V presents a comparison of the training costs. Results
demonstrate that TLAST attains significant improvements
in computational consumption compared to the second-best
method while simultaneously achieving superior prediction
accuracy. On the T-Drive dataset, the reduction in the three cost
metrics reaches 85.21%, 75.14%, and 61.50%, respectively.
Furthermore, Figure 7 illustrates the convergence curves.
TLAST and STAEformer achieve low validation set error in
over twenty epochs. This highlights the superior convergence
speed of embedding-based methods. On the other hand, unlike
methods requiring precomputed data like clustering [17] or
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time step length (OOM: out-of-memory).

DTW matrices [10] for training, our approach avoids such
additional overhead, enabling more flexible data usage.

2) Scalability With Respect to the Number of Nodes and
Time Steps: In the second group of experiments, we simulate
an increase in the number of nodes and the sequence length
by extracting a subset from dataset CA, respectively. For
instance, experiments are conducted using the data from the
first 1000 nodes out of a total of 8600. We focus on comparing
the computational efficiency of each method under these
conditions. To facilitate a clear comparison, we standardized
the parameters for this experiment, fixing both input and pre-
diction time steps at 12. Additionally, the number of samples
for training, validation, and testing is set at 100, with a batch
size of 1. For the group of sequence length, we fix the number
of nodes as 500 and increase the input and predict length
gradually.

Figure 8(a) shows the computational cost of models as
the number of nodes increases. It can be observed that two
state-of-the-art methods PDFomer and STAEformer encoun-
tered out-of-memory (OOM) errors, rendering them unable
to continue running when the number of nodes exceeded
2500 and 4500, respectively. In contrast, SSTBAN and TLAST
demonstrate lower computational overhead due to their linear
algorithmic complexity. As the number of nodes grows, the
computational consumption of TLAST continues to exhibit
a steady linear growth trend, while computational costs con-
sistently remain at relatively low levels. Figure 8(b) presents
the performance as the sequence length increases. In contrast
to baseline methods, our model demonstrates a smooth linear
growth trend in computational consumption as both input and
target time steps increase, all while maintaining a notably low
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Fig. 9. The impact of varying numbers of proxy nodes on model performance.

level. These results emphasize the favourable scalability of
TLAST, thereby offering a potential solution for prediction
tasks involving large sets of sensors or finer grid partitions in
real-world applications.

E. Hyperparameter Sensitivity Study (RQ3)

As an important component of our proposed TLAST model,
the SPA aims to achieve more efficient feature extraction
by reducing the query-key pairs needed to be computed.
Therefore, the number of proxy nodes m, as the length of
the input query, plays a vital role in the model efficiency.
To investigate the sensitivity of TLAST to m, we conduct a
group of experiments setting exponentially increasing values
of m. The prediction accuracy and GPU memory usage in
training are monitored. Figure 9 presents the experimental
results on the T-Drive and PEMSO07 datasets, and similar
results are observed on other datasets as well.

We observe that the model does not exhibit much sensi-
tivity to m. Despite the exponential increase in m values,
the MAE curves do not demonstrate a noticeable upward or
downward trend. In other words, increasing the number of
proxy nodes m, even up to the original number of nodes,
does not necessarily improve performance; however, it does
indeed increase computational costs. This aligns with our
initial expectations that a small m is adequate for summarizing
node representation without sacrificing performance, while
also providing efficiency gains. This also serves as a reminder
that the spatial-temporal correlations among traffic nodes can
be adequately captured and analyzed in a lower-dimensional
space. In our experiments on seven datasets, m is set to be 2,
4, 8 respectively as in Table I.

Additionally, the hidden dimension d’ used to map the
spatio-temporal features HS” in the prediction module is
determined based on performance on the validation set.
On datasets with different number of nodes, d’ reaches a bound
of 1024. However, in tasks with longer prediction horizons,
a larger d’ may be required to construct a more expressive
spatio-temporal latent space.

F. Ablation Study (RQ4)

To verify the effectiveness of three modules in TLAST,
we design two groups of ablation study. The first group
includes five variants: (1) w/o Temporal Embedding: It
removes the temporal embedding. (2) w/o Spatial Embed-
ding: It removes the spatial embedding. (3) w/o ST-Encoder:
It removes the entire CSTFE module. (4) w/o Cross-
time Setting: It removes three parts: cross-time connections
in the embedding module, the time-lag embedding block,
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training time). The batch size is 16.

and the readout function in SPA is learned from the whole Z
rather than Z;. (5) w/o Time-Lag Embedding: It removes the
time-lag embedding block but remains other cross-time setting.
Results are shown in Figure 10. We can obtain the following
observations: First, the absence of spatial or temporal
embedding causes significant performance degradation.
Two embeddings jointly enhance the model’s ability to distin-
guish spatiotemporal semantics, which is particularly crucial
for road network datasets with high time-lag complexity. The
role of embeddings is consistent with the findings in STAE-
former. Second, the CSTFE module contributes notably to
prediction accuracy. Removing it forces the model to rely
solely on embeddings for spatial-temporal feature extraction,
leading to performance degradation, particularly on grid-based
datasets. This may be because road networks allow time-lag
patterns to be more easily encoded via embeddings, while
grid datasets—with shorter delays and lower complexity—
require more direct modeling of spatio-temporal dependencies.
Third, both the cross-time setting and time-lag embedding
improve prediction accuracy. Removing all cross-time com-
ponents reduces the encoder to a standard Transformer relying
only on spatial-temporal embeddings, leading to performance
drops. While the time-lag embedding block also enhances
performance, its impact varies depending on the dataset’s delay
characteristics. Nevertheless, the model maintains competitive
results, likely due to the mixed mapping of spatio-temporal
features in the time-interval-wise prediction module.

The second group of ablation studies compares TLAST (i.e,
w/ SPA) against three attention variants: (1)w/ Full Att: It
replaces the SPA block with a full attention block, which
has a complexity of O(N?). (2) w/ ProbSparse Att: It

replaces the SPA block with a ProbSparse attention block from
Informer [33] which exhibits O(N log N) complexity. (3) w/
DIFFormer Att: It replaces the SPA block with a simple
diffusivity model from DIFFormer [32], a recent advanced
method demonstrating a linear complexity of O(N). Figure 11
presents the performance comparison of four attention vari-
ants. The width of bins denotes the amount of GPU memory
usage, while the height represents comparative training time
costs. Therefore, the area size of the bins intuitively represents
the temporal and spatial consumption required by models.
Results of this variants experiment reveal that on road network
datasets, our TLAST model performs comparably to the state-
of-the-art linear Transformer. On grid datasets, our TLAST
model outperforms all variants. A possible reason is that the
proxy mechanism reduces the number of node interactions that
need to be learned, which helps mitigate overfitting, especially
in datasets with higher missing rates. Furthermore, when the
number of nodes increases significantly beyond the levels
of other hyperparameters, the model’s consumption can be
observed to be greatly reduced.

G. Case Study (RQS5)

In this section, we present a case study to demonstrate
the practical effectiveness of our model’s predictions and
the ability of the proposed SPA module to capture dynamic
dependencies. First, we show the actual prediction results of
the model on Node #117 from PEMSO08 dataset, as illustrated
in Figure 12(a). The predicted curve closely follows the ground
truth, especially in segments where the original values exhibit
minor fluctuations. This trend-fitting ability offers valuable
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Fig. 12. Practical forecasting results and dynamic attention scores of the
proposed TLAST model.

insights for practitioners analyzing traffic patterns in real-
world applications.

In addition, Figures 12(b) and 12(c) visualize the dynamic
variations of two attention matrices (A7 and Aj) learned by
our SPA module on the test set of PEMSO0S. Specifically,
we examine one week of data for two adjacent nodes (41
and 43) and two distant nodes (124 and 117). For each node,
the two attention scores with respect to the learned proxy
nodes (from A and A») are aggregated into 7 x24-dimensional
vectors, representing the attention scores across 24 hours over
7 days. These visualizations lead to the following observations:

(1) The degree of correlation between the four traffic
nodes and proxy nodes exhibits periodic variations over time.
It reveals latent semantics of cyclic traffic patterns, such as
repetitive distributions distinguishing between weekdays and
weekends. (2) Distinct attention patterns emerge for different
traffic nodes at different times, highlighting the heterogeneity
among nodes. For example, node 43 exhibits a higher contribu-
tion on weekday evening rush hours and a lower contribution
during daytime. This contrast emphasizes the effective dis-
criminatory capability of TLAST. (3) The model is capable
of identifying nodes with similar spatial-temporal patterns
from traffic data itself, with no need for time-consuming pre-
analytical operations such as clustering.

H. Robust Analysis

To investigate the robustness of TLAST, we evaluate its
prediction performance under missing data conditions in this
subsection. Specifically, we introduce random missing values
into the training set of the PEMS08 dataset and compare the
prediction performance of TLAST with the two state-of-the-
art baseline methods, PDFormer and STAEformer, under the
same missing data settings. As shown in Figure 13, at lower
missing rates (<40%), PDFormer’s performance degrades
rapidly as the missing rate increases, while STAEformer and
TLAST demonstrate similar levels of robustness, with TLAST
achieving the best prediction performance. Under high missing
rates (>50%), all models experience significant performance
degradation. However, TLAST maintains lower prediction
errors than the other two, indicating superior robustness.
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1. Discussion

To provide deeper insights beyond empirical results,
we organize the discussion into four aspects: the contribu-
tion of time-lag analysis to traffic modeling, the key factors
underlying the improvements in prediction accuracy and com-
putational efficiency, the limitations of TLAST, and practical
implications for real-world deployment.

1) The Time-Lag Analysis Could Benefit Traffic Forecasting
Research: By calculating the optimal time lag and the associ-
ated complexity for each node pair, an inherent inductive bias
embedded in the spatial-temporal structure of traffic data can
be uncovered. This bias reflects the latent dynamic spatial rela-
tionships and it can be a guiding principle for model design.
For traffic data characterized by short time lags and low
time-lag complexity (e.g., city grid data), it is more important
to model the spatial-temporal interactions between nodes than
learned embeddings. Conversely, for traffic data with longer
time lags and higher complexity (e.g., road network data),
effective spatial and temporal embeddings become essential
to maintain the model’s expressiveness.

2) The Key Factors Contributing to the Accuracy and Effi-
ciency Gains of TLAST: TLAST achieves better performance
by explicitly incorporating a direct link between different
time intervals to capture the time-lag aware spatial-temporal
features in the embedding stage and the attention extraction.
Through the cross-time data embedding and the time-lag
embedding, TLAST is adaptively learn discriminative pat-
terns associated with different delays. Through the interaction
between spatial Queries and Keys from different time step,
TLAST avoids redundant sliding-window computations and
captures essential patterns under varying delays.

Besides, the proposed SPA module further improves
efficiency by introducing a proxy mechanism that reduces
node interactions, lowering time complexity and helping
to prevent overfitting in datasets with weak time-lag
dependencies. Finally, the prediction module fuses multi-delay
spatial-temporal features and performs step-wise forecasting,
effectively leveraging time-lag-aware representations to
enhance accuracy.

3) Current Imitations of TLAST: While TLAST demon-
strates strong performance in short-term forecasting, its ability
to handle distribution shifts remains limited—an issue shared
by many traffic prediction models. In real-world applica-
tions, traffic conditions can vary significantly across time and
regions, requiring models to be more adaptive to dynamic
environments. Moreover, the current evaluation primarily
focuses on short-term prediction. As shown in the second
row of Table V, the performance improvement becomes less
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pronounced in long-term forecasting scenarios. This suggests
that further investigation is needed to understand how time-lag
modeling interacts with long-range temporal dependencies and
to explore strategies for enhancing model generalization under
extended horizons.

4) The Practical Insights for Real-World Intelligent
Transportation Systems by TLAST: The lightweight and
time-lag-aware design of TLAST makes it well-suited for
real-world intelligent transportation systems. In scenarios
such as adaptive signal control or real-time congestion
monitoring, its linear complexity and low memory footprint
enable efficient deployment on edge devices. By explicitly
modeling time-lagged spatial correlation, TLAST achieves
better accuracy with less computational cost, supporting
proactive traffic management.

Notably, TLAST retains the original Transformer archi-
tecture, achieving linear complexity by reducing input token
length rather than modifying the attention mechanism. This
ensures compatibility with existing hardware optimizations,
allowing for faster and more scalable inference. Moreover,
the SPA module’s flexible readout mechanism enables tar-
geted analysis of key traffic nodes (e.g., critical intersections),
enhancing the model’s interpretability and practical utility.

VI. CONCLUSION

In this work, we proposed a Time-Lag Aware Spatial-
temporal Transformer (TLAST) model for traffic flow fore-
casting. Inspired by empirical findings that spatial correlations
among traffic nodes can strengthen under specific time lags,
TLAST explicitly integrates cross-time structures into both
the embedding and attention modules. This design allows
the model to capture time-lag-aware spatial-temporal features
more effectively. Furthermore, we introduce the SPA module
to model dynamic spatial dependencies with linear complexity.

Extensive experiments on seven real-world datasets demon-
strate that TLAST achieves superior prediction accuracy while
significantly reducing computational overhead, underscoring
its practicality for real-time intelligent transportation sys-
tems. Empirical analysis further shows that the cross-temporal
design and the SPA module enable efficient learning of
time-varying spatial correlations. Despite its effectiveness,
TLAST currently focuses on short-term forecasting and faces
challenges under distribution shifts. Future work will aim
to enhance its robustness to such shifts and investigate the
integration of time-lag modeling into long-term prediction
tasks.
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