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Abstract— Multivariate time series forecasting is crucial
across various applications. In recent years, numerous studies
adopt embedding layer and Attention mechanism to extract the
intricate spatio-temporal features of time series. This involves
directly transmitting the concatenated embeddings into the
Attention mechanism. However, they generally overlook the
importance of sending the integrated information in the em-
beddings into the Attention mechanism in a more appropriate
way. To address this, we propose an intuitive network model
with Temporal MLP Bridging the gap between Embedding and
Attention (TMBEA) to deal with the above issue. Specifically,
we explore a light-weight bridge with simple Multi-Layer Per-
ceptrons (MLPs) fusing features along the temporal dimension,
processing the embeddings before feeding them into the canon-
ical Attention networks, which help embeddings to better align
with the subsequent Attention networks. Experiments on real-
world datasets, traffic datasets and air pollutant concentration
datasets, demonstrate the efficiency of model. Further studies
also show the capacity of bridge in improving the robustness
of the model.

I. INTRODUCTION

Accurate multivariate time series forecasting is crucial for
fields like weather, electricity, and traffic [1]–[3] due to its
inherent temporal and spatial dependencies.

Over the years, significant advancements have been made
in this field. Initially, deep learning models like Recurrent
Neural Networks (RNNs) were used to analyze temporal fea-
tures [4]–[6]. Later, Graph Convolutional Networks (GCNs)
became prominent for spatial graphs, often integrated with
RNNs [7], [8], Graph Neural Networks (GNNs) [9], [10],
and Temporal Convolutional Networks (TCNs) [2], [11],
[12] to enhance predictive performance. Furthermore, to
better capture intricate spatio-temporal dependencies, Atten-
tion mechanisms have become increasingly prevalent. Efforts
in Attention-based models focus on: (1) Components of
embeddings to cooperate with Attention mechanism:
GMAN [13] and PDFormer [14] utilized spatial embedding
by Node2Vec [15] and Spatial Graph Laplacian Embedding
respectively to emphasize the spatial feature. (2) The com-
bination of Attention mechanism with other models: To
formulate a graph that can represent the spatio-temporal
correlations more accurately, some studies [16], [17] have
delved into the fusion of GCN and Convolutional Long
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Short-Term Memory (ConvLSTM) architectures with Atten-
tion mechanisms. (3) The modification on the original
Attention structure [18]–[20]: These studies aim to mitigate
the computational resource demands of attention models,
also preserving their capability in time series forecasting.

While each contributes valuable insights to Attention-
based research, they have not fully addressed direct in-
formation transfer between independent modules without
processing. Notably, there is an oversight regarding the
bridge connecting embeddings with subsequent Attention
architectures, which enhances the handling of embeddings
to better align with Attention networks.

Inspired by this, in this paper, we look deep into the bridge.
From recent studies, we derive the following observations
regarding the integration of embedding and Attention: (1)
Embedding without Attention: STID [21] concatenates
spatial and temporal embeddings, processing them with MLP
networks, achieving remarkable performance. This shows
that even simple networks can make embeddings effective,
motivating further embedding processing for better synergy
with Attention mechanisms. (2) Embedding with Attention:
STAEformer [22] adopts an adaptive embedding, which
makes the vanilla Transformer [23] perform better. However,
it lacks adaptation to refine the embeddings before feeding
them into the Transformer architecture. (3) Bridge with
Attention [20]: utilizing causal convolution as a bridge to
generate queries and keys for Attention has proven effective
for capturing local information for long-term prediction.
However, causal convolution, limited to preceding text,
misses global information integration, leading to potential
information asymmetry. This motivates building a bridge
across the temporal dimension to capture full contextual
features for queries, keys, and values, which are crucial
components for Attention mechanisms.

To achieve the above purpose, we proposed a straightfor-
ward yet effective MLP network playing as bridge to fuse
temporal features within the embeddings, thereby attaining
a comprehensive global receptive field. Subsequently, the
refined embeddings play as query, key and value in temporal
Attention, followed by spatial Attention and regression layer.
This concise architecture has achieved favorable outcomes
across five datasets. The experiments meanwhile demonstrate
that the bridge enhances the robustness of the model.

II. PROBLEM DEFINITION

Given historical multivariate time series
[Xt−H+1, · · · , Xt] with H previous time slots, we
aim to learn a function f which is capable of predicting
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Fig. 1: The overall framework of our proposed model.
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the future multivariate time series [Yt+1, · · · , Yt+F ] with F
time slots.

[Xt−H+1, · · · , Xt]
f−→ [Yt+1, · · · , Yt+F ] (1)

Xi, Yi ∈ RN×c where N represents the number of spatial
nodes and c denotes the dimension of the feature space.

III. METHODOLOGY

The overall framework of our proposed model is as shown
in Fig. 1. It mainly has five steps, which are embedding layer,
Temporal MLP (the bridge), Multi-head Temporal Attention,
Multi-head Spatial Attention, and Regression layer.

A. Embedding Layer

In order to provide more informative feature representation
on spatial and temporal for subsequent learning process,
embedding layer is employed to project the input variables
into an alternative space.

Apart from the historical features X ∈ RH×N×c (e.g.
the traffic flow in traffic datasets), we derive two time
information: the time-of-day information Xtod ∈ RH×N×1

and day-of-week information Xdow ∈ RH×N×1. Since there
are 7 days a week and predefined T time frames a day,
Xdow only has 7 possible values, and T values are available

for Xtod. Thus, we initialize the embedding dictionary for
each kind of time information as Idow ∈ R7×d2 for day-
of-week and Itod ∈ RT×d3 for time-of-day (d2 and d3
are the dimensions of the embedding space). When we
need to embed the time information for each node in the
historical time steps, we just need to pick the corresponding
slices in Idow and Itod, denoting the embedded nodes as
Etod ∈ RH×N×d2 and Edow ∈ RH×N×d3 .

First, we project all features of input into a hidden space
dimension, represented as Ew ∈ RH×N×d1 .

Ew = Linear(X∥Xtod∥Xdow) (2)

Next, we apply learnable temporal embeddings Etod ∈
RH×N×d2 and Edow ∈ RH×N×d3 to characterize tempo-
ral information. Additionally, adaptive embedding has been
proved to be an efficient structure for Transformers [22], so
we adopt a randomly initialized adaptive embedding Ea ∈
RH×N×d4 to capture intricate spatio-temporal relation.

By concatenating all the embeddings above along the
feature dimension, we obtain the embedding E ∈ RH×N×d

indicating both feature and time information, where d =
d1 + d2 + d3 + d4 and || denotes the concatenation along
the feature dimension.

E = Ew∥Etod∥Edow∥Ea (3)

However, employing embeddings directly in this manner may
result in overly discrete information, consequently diminish-
ing the efficiency of the Attention layers. Hence, we propose
a solution to this issue in the subsequent part, which is an
approach to fuse embeddings.

B. Temporal MLP

We propose an n-layer MLP network operating along the
temporal dimension of the embeddings to refine features
of each time phase, thereby incorporating global contex-
tual temporal information into the embedding at each time
step. This module maintains the shape of the embedding
unchanged.

As shown in Fig. 2, for the lth layer of Temporal MLP,
embedding El (when l = 1, El is E generated in Eq. (3)) can
be partitioned along the temporal dimension into H vectors,
yielding El

t1 , · · · , E
l
tH ∈ RN×d. We aim for embeddings of

each temporal phase to encompass a fraction of information
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from other temporal phases, thus we propose the fusion on
global contextual information in the form of Eq. (4).

Ẽl
ti = wl

i1E
l
t1 + · · ·+ wl

iHEl
tH , i = 1, · · · , H (4)

where wij are learnable parameters. This approach charac-
terizes time continuously rather than discretely, providing
useful background for the subsequent attention mechanism.
For short time series prediction, it is efficient, demanding
only H × H parameters, compared to N × N parameters
for each layer in the spatial dimension. When the number
of spatial nodes exceeds the number of historical time steps,
this configuration enhances efficiency and reduces memory
usage.

Following the global fusion of embeddings across the
temporal dimension, we proceed to apply activation and
regularization function to the output:

Ẽl
hidden = Dropout(σ(Ẽl)) (5)

where σ serves as an activation function, being set to
ReLU function, while Dropout function as the regularization
mechanism. Following, we repeat Eq. (4) again towards
Ẽl

hidden ∈ RH×N×d gaining Ẽl
final ∈ RH×N×d. Afterward,

we utilize a residual layer to prevent degeneration during
learning as shown in Eq. (6).

El
final = Ẽl

final + El (6)

For the next layer, we employ the output of the preceding
layer El

final as the input El+1, and stack another block with
the same aforementioned process (Eq. (4), Eq. (5), Eq. (6)),
aiming to attain a more refined fusion effect. After n layers,
we obtain an overall output denoted as En

final.
Finally, we adopt residual connection again to underscore

the original embedding information E generated in Eq. (3),
and obtain the E ∈ RH×N×d:

E = En
final + E (7)

E becomes the source for query, key and value in the
following temporal multi-head self-Attention layer. Simulta-
neously, the temporal MLP module preserves the shape of the
embeddings at each layer to retain more realistic information.

C. Attention Mechanism and Regression Layer

Given the intrinsic relationships among information from
different time phases at different spatial nodes, we aim to
utilize attention mechanisms across temporal and spatial
dimensions to effectively capture these correlations.

Adopting the canonical Transformer model architecture
[24], we first apply the Attention mechanism along the
temporal dimension. We transpose E ∈ RH×N×d into
temporal embeddings Et1, · · · , EtH ∈ RN×d. Utilizing fully
connected layers, FC(·), we derive the query, key, and value
matrices Qtmp,Ktmp, Vtmp ∈ RN×H×d as follows:

Qtmp = FCq(reshape(Et1∥ · · · ∥EtH ))

Ktmp = FCk(reshape(Et1∥ · · · ∥EtH ))

Vtmp = FCv(reshape(Et1∥ · · · ∥EtH ))

(8)

TABLE I: Details for Datasets

Dataset #Sensors #Timesteps TimeRange
PeMS04 307 16992 01/2018-02/2018
PeMS08 170 17856 07/2016-08/2016

AQI 35 17382 01/2015-12/2016
PM10 35 17382 01/2015-12/2016
PM2.5 35 17383 01/2015-12/2016

Note that the FC(·) operation denotes the linear projection
along the feature dimension d. Qtmp,Ktmp, Vtmp are then
sent into Multi-head Self-Attention MHSA(·) and feed
forward networks FFN(·):

ZAtt = LayerNorm(MHSA(Qtmp,Ktmp, Vtmp) + E)
Z = LayerNorm(FFN(ZAtt) + ZAtt)

(9)
where Z ∈ RN×H×d is the output.

And then, we extend the Attention mechanism to
the spatial dimension, involving partitioning of Z into
Zn1 , · · · , ZnN

∈ RH×d to generate Qspt,Kspt, Vspt ∈
RH×N×d. Repeat the above Add and Norm step (Eq. (9)),
resulting in an output of Y0 ∈ RH×N×d.

For the regression layer, it operates on the output Y0 ∈
RH×N×d derived from the feature enhanced by spatial
attention. Initially, we transform Y0 into Y1 ∈ RN×F ·d,
followed by prediction utilizing Eq. (10).

Y = reshape(FCregression(Y1)) (10)

Consequently, we obtain the predicted future series Y ∈
RF×N×c.

IV. EXPERIMENTS

To verify the effectiveness of TMBEA, experiments are
conducted to compare it with baseline methods.

A. Experimental Setup

Datasets: We evaluate our proposed structure on five real-
world datasets in total. (1) Two traffic forecasting bench-
marks, i.e. PeMS04 and PeMS08. The datasets depict the
traffic flows spanning the freeway system across all major
metropolitan areas of the State of California1. (2) Three
datasets for air pollutant concentration, namely AQI, PM10
and PM2.5. The datasets2 cover the period from 2015 to
2016, with air pollutant concentrations in Beijing recorded
hourly. Missing values are filled with linear interpolation.

In summary, the time interval for the two traffic datasets is
5 minutes, resulting in T = 288 time frames per day. And the
time interval for the three air pollutant concentration datasets
is 1 hour, leading to T = 24 time frames per day. Further
details are provided in Table I.

Baselines: We compare TMBEA with the following base-
lines. (1) HI [25]: The typical traditional method, utilizing
the feature values of the last F time steps of the input
H time steps as the prediction. (2) GWNet [12], AGCRN

1http://pems.dot.ca.gov
2https://quotsoft.net/air
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TABLE II: Performance on PeMS04 and PeMS08

Dataset PeMS04 PeMS08
Metrics RMSE MAE MAPE RMSE MAE MAPE

HI 128.20 94.25 153.70% 120.12 86.04 166.72%
GWNet 30.44 19.01 13.32% 23.69 14.80 9.44%
AGCRN 32.75 20.04 13.47% 24.86 15.66 10.47%
STGCN 31.56 19.66 13.32% 25.77 16.46 11.02%

STID 29.90 18.35 12.56% 23.93 14.44 9.63%
STAEformer 30.11 18.23 11.89% 23.33 13.58 9.05%

TMBEA 29.92 18.19 12.00% 23.20 13.48 8.89%

[7], STGCN [2]: based on graph neural networks to capture
spatial dependencies in the adjacency matrix of graph. (3)
STID [21]: Explore a concise and efficient model, comprising
embedding layer, followed by MLPs. (4) STAEformer [22]:
Employing embeddings applicable to Transformers, includ-
ing adaptive embeddings, together with vanilla Transformer.

Metrics: We test the performance of all baseline models
and TMBEA with three widely adopted metrics in multi-
variate time series forecasting: Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Mean Absolute Per-
centage Error (MAPE). We compare the average performance
for all the datasets over the horizons. The predicted value of
the kth sample is ŷk, and the real value of the kth sample is
yk. m is the number of samples. MAE, RMSE and MAPE
can be formulated as:

MAE =
1

m

m∑
k=1

|ŷk − yk|. (11)

RMSE =

√√√√ 1

m

m∑
k=1

(ŷk − yk)2, (12)

MAPE =
100%

m

m∑
k=1

| ŷk − yk
yk

|. (13)

Implementation: We implement the model with Pytorch
1.12.0 on an NVIDIA RTX 3060 GPU. For PeMS04 and
PeMS08, we set the number of input historical steps H
to 12, and the horizon F to 12. For all the air pollutant
concentration datasets, we set two prediction tasks: 1) H =
8, F = 4. 2) H = 4, F = 1. All the five datasets are
divided into train, validation and test sets with ratio 6:2:2.
The feature dimension c is 1, and the temporal MLP layer n
is set to 3. We train the models with Adam optimizer with
an initial learning rate of 0.001, and set the batch size to 8.

B. Performance Study

Performance on PeMS04 and PeMS08: Table II com-
pares the average performance of TMBEA and baselines
across 12 predicted time steps. The best results are in bold,
and the second-best are underlined. TMBEA outperforms
convolution-based models GWNet, STGCN, and AGCRN,
highlighting the efficiency of Attention-based models. No-
tably, TMBEA surpasses recent models STID and STAE-
former on most metrics. Outperforming STID indicates that
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Fig. 3: Results of four ablation studies compared to the
original TMBEA on PeMS04 and PM10

the Attention mechanism extracts deeper spatio-temporal
features, while surpassing STAEformer suggests that the
straightforward temporal processing of embeddings effec-
tively enhances Attention mechanism performance.

Performance on Air Pollutant Concentration Datasets:
As depicted in Table III and IV, TMBEA outperforms the
baseline model on most metrics, demonstrating its general-
ization capacity. Notably, TMBEA performs better when pre-
dicting 4 future time steps with 8 historical steps compared to
predicting 1 step with 4 steps, indicating its superior ability to
capture spatio-temporal features for longer-term predictions.

C. Ablation Study

To verify the effectiveness of each part of TMBEA, we
conduct the experiments on PeMS04 (H = 12, F = 12) and
PM10 (H = 8, F = 4): 1) w/o temporal MLP removes the
temporal MLP layer we proposed. 2) w/o spatial Attention
removes the whole spatial Attention block. 3) w/o temporal
Attention removes the whole temporal Attention block. 4)
w/o temporal & spatial Attention removes both the whole
temporal and spatial Attention blocks. 5) spatial MLP +
spatial Attention replaces the original temporal MLP with
a network of identical structure as our proposed temporal
MLP, while designed to operate spatially. And removes the
whole temporal Attention block. This modification results
in feature extraction exclusively along the spatial axis. 6)
causal convolution & Attention replaces the temporal MLP
in TMBEA with causal convolution.

We have seen results as below:
• Results of four ablation studies

In Fig. 3, the TMBEA w/o temporal MLP experiment
shows a performance drop, demonstrating the effective-
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TABLE III: Performance on Air Pollutant Concentration Datasets (4 historical steps predicting 1 future step)

Dataset AQI PM10 PM2.5
Metrics RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HI 68.82 43.23 74.75% 75.69 50.21 138.15% 69.13 45.15 223.49%
GWNet 5.40 1.66 2.40% 18.27 9.62 15.78% 14.91 8.07 17.80%
AGCRN 5.41 1.66 2.33% 18.68 10.13 16.21% 15.18 8.32 19.26%
STGCN 10.58 6.64 12.47% 23.27 14.37 27.51% 17.02 9.28 19.39%

STID 5.58 1.62 2.37% 20.12 10.59 16.72% 16.80 9.00 20.84%
STAEformer 5.41 1.60 2.34% 18.24 9.51 15.14% 14.56 7.81 18.42%

TMBEA 5.42 1.57 2.31% 18.18 9.46 14.93% 14.29 7.71 18.58%

TABLE IV: Performance on Air Pollutant Concentration Datasets (8 historical steps predicting 4 future steps)

Dataset AQI PM10 PM2.5
Metrics RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

HI 47.47 69.91 79.71% 81.14 58.68 152.33% 74.61 52.80 243.74%
GWNet 8.21 3.59 4.76% 29.86 16.71 26.57% 28.37 15.62 37.56%
AGCRN 8.47 3.97 5.19% 31.27 18.07 29.63% 30.31 16.91 36.94%
STGCN 8.62 4.27 5.75% 30.33 18.32 28.91% 28.05 15.62 34.59%

STID 9.26 4.01 5.44% 33.89 19.32 32.83% 32.30 17.52 43.54%
STAEformer 8.29 3.68 4.92% 28.12 16.26 26.46% 26.48 14.46 33.64%

TMBEA 8.09 3.49 4.69% 27.75 15.73 25.86% 25.79 14.09 32.57%
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Fig. 4: Results of two variant experiments compared to the
original TMBEA on PeMS04 and PM10

ness of our proposed temporal MLP. For both datasets,
TMBEA w/o spatial Attention and w/o temporal
Attention also show decreased accuracy, highlighting
the importance of both Attention blocks, especially the
spatial one. TMBEA w/o temporal & spatial Attention
performs the worst, lacking the integration of both
blocks. This confirms that the Attention mechanism
is crucial for capturing intricate spatial and temporal
features.

• Results of two variant experiments
As shown in Fig. 4, the model spatial MLP + spa-
tial Attention highlights the importance of extracting
both temporal and spatial information and the benefit
of fusing temporal features within embeddings during
the bridge block. The model causal convolution &
Attention indicates that integrating full contextual in-
formation is vital, as causal convolution captures only
preceding information.

D. Robust Study

To assess the efficacy of our design bridge, we conduct a
robust study on the PeMS08 dataset by introducing missing
data. We randomly set zeros on the train, test sets, or both
to create missing data, with mask rates of 10%, 20%, 30%,
40%, and 50%. Masking the training set simulates defective
training data, while masking the test set replicates real-world
data imperfections. This allows us to evaluate if the temporal
MLP can enhance the robustness of TMBEA under these
conditions.

As shown in Fig. 5, we compare TMBEA with TMBEA
w/o temporal MLP on PeMS08. At lower mask rates,
TMBEA outperforms the variant w/o temporal MLP. As the
mask rate increases, the advantage of TMBEA with temporal
MLP becomes more pronounced, demonstrating its ability
to maintain predictive accuracy in harsh conditions. This
highlights the bridge’s unique benefit of handling incomplete
data effectively. Despite challenges with severely incomplete
training sets, TMBEA offers a reliable and robust real-world
solution.

V. CONCLUSION

In this paper, we focus on how to deal with embeddings so
that the subsequent Attention mechanism can better extract
the temporal and spatial features of the time series. We
proposed a simple temporal MLP network playing as a
bridge connecting embedding and Attention mechanism.
The model with embedding, bridge, Attention mechanism
achieves better performance through two traffic datasets, and
three real-life air pollutant concentration datasets. Further
studies demonstrate that our proposed bridge can help the
structure resist harsh test environment. These results suggest
that the bridge can enhance the impact of embeddings,
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Fig. 5: the MAE and RMSE of TMBEA and w/o temporal
MLP on PeMS08 when we train and test on the dataset
with mask rate between 10% and 50% on different partitions
(mask train set or test set or both)

providing a promising direction for further research into
embeddings. However, this paper does not delve deeply into
the design of embedding layer, leaving space for future
research aiming at creating simpler embedding yet preserving
richer spatio-temporal information.
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