Qi Zheng

📬 zhengqi97@tongji.edu.cn / 📬 zq12756@126.com

qi_avatar_new.jpg

Tongji University

Jiading, Shanghai

👋 About Me

Hi, I’m Qi Zheng (郑启). I am a Ph.D. candidate at Tongji University (expected Aug 2026) specializing in efficient and scalable spatial-temporal forecasting for real-world sensor networks (traffic, climate, and energy).
My research aims to make forecasting models both high-performing and adaptable-efficient in computation and flexible in handling evolving temporal and spatial structures.

My research interests include spatio-temporal data mining, multivariate time-series analysis, self-supervised representation learning, and foundation models (LLMs). Currently, I am extending this line toward temporal scalability and ultimately integrating both time and space scalability into future large spatial-temporal foundation models.

✨ I’m seeking roles in deep learning/machine learning, spatial-temporal modeling, or foundation-model (LLM) algorithm research and applications. 📬 If you’re interested in my work, open to collaboration, or have relevant opportunities, I’d be glad to connect!


Hi!我是郑启,同济大学博士研究生(预计于2026年8月毕业),研究方向为高效且可扩展的时空预测建模,主要面向交通、气象与能源等传感网络。 我的研究目标是让预测模型既具备高性能与高适应性,又在计算上高效、能灵活应对时间与空间结构的动态变化。

我的研究兴趣包括:时空数据挖掘(spatial-temporal data mining)、多变量时间序列分析(multivariate time-series analysis)、时间外推(temporal extrapolation)、空间自适应(spatial adaptation)、自监督表征学习(representation transfer)以及大模型(foundation models, LLMs)。 目前,我正在进一步探索时间维度的可扩展性(temporal scalability),并计划在未来将时间与空间两方面的可扩展性相结合,构建下一代时空大模型(spatial-temporal foundation models)。

✨ 我正在寻求深度学习/机器学习/大模型算法研究或应用方向的岗位。 📬 如果你对相关研究感兴趣,或希望交流合作、提供岗位,非常欢迎与我联系!


selected publications

  1. [TITS’25] TLAST
    TLAST_model.jpg
    TLAST: A Time-Lag Aware Spatial-Temporal Transformer for Traffic Flow Forecasting
    Qi Zheng, Minhua Shao, and Yaying Zhang*
    IEEE Transactions on Intelligent Transportation Systems, 2025
  2. [AAAI’25] ST-ReP
    ST-ReP_model.png
    ST-ReP: Learning Predictive Representations Efficiently for Spatial-Temporal Forecasting
    Qi Zheng, Zihao Yao, and Yaying Zhang*
    Proceedings of the AAAI Conference on Artificial Intelligence, 2025
  3. [DASFAA’23] TAGnn
    TAGnn_model.jpg
    TAGnn: Time Adjoint Graph Neural Network for Traffic Forecasting
    Qi Zheng and Yaying Zhang*
    In Database Systems for Advanced Applications: 28th International Conference, DASFAA 2023, Tianjin, China, April 17–20, 2023, Proceedings, Part I, 2023
  4. [TBD’22] DSTAGCN
    DSTAGCN_model.jpg
    DSTAGCN: Dynamic Spatial-Temporal Adjacent Graph Convolutional Network for Traffic Forecasting
    Qi Zheng and Yaying Zhang*
    IEEE Transactions on Big Data, 2022